DEPARTMENT OF ENVIRONMENTAL PROTECTION Isiah Leggett County Executive Robert G. Hoyt Director May 24, 2012 Mrs. Martha Hynson, Chief Landfill Operations Maryland Department of the Environment 1800 Washington Boulevard Baltimore, Maryland 21230 Dear Mrs. Hynson: Please find enclosed the results of the latest water quality monitoring performed at the Gude Landfill for the Spring 2012. This report has been developed based on the approved Groundwater and Surface Water Monitoring Plan (G&SWM) to monitor the water quality contamination in and around the Gude Landfill in Montgomery County. This report is submitted in fulfillment of the G&SWM requirements approved by Maryland Department of the Environment (MDE). This report provides a summary of the results for water quality monitoring performed for the semiannual period from September 2011 to March 2012. In addition to sampling results and analysis for the 20 observation wells and 5 stream locations specified in the approved G&SWM, this report also includes the monitoring results for an additional 16 monitoring wells constructed in 2010 at the site as part of an ongoing Nature and Extent Study being conducted by the County's Department of Environmental Protection - Division of Solid Waste Management in coordination with your Office. To differentiate between the two sets of observation wells; the newly installed observation wells have been designated by the prefix "MW", while the preexisting wells are designated by an "OB", as in prior reports. Information pertaining to the newly installed monitoring wells (MW) including permits, location, completion reports, and construction records has been forwarded to your office with prior reports. The results obtained for this reporting period are similar and comparable with the prior monitoring results with respect to the types and concentrations of pollutants. The results represent typical fluctuations in water quality that have been observed previously during the past several years. The following provides a brief overview of the results obtained from the laboratory analyses for all the monitoring sites for this reporting period. Please refer to the attached tables, diagrams, and the enclosed CD for additional information. #### **VOLATILE ORGANIC COMPOUNDS:** The highlights of the results for this reporting period are listed below. Please note that MCL (Maximum Contaminant Level) is a drinking water standard adopted by the U.S. EPA, its use in this report is as a reference only since this groundwater is not a source of drinking water. Please refer to Table 1 of the report for all the VOC results. - No VOCs were detected above recommended Maximum Contaminant Level (MCL) in the following monitoring wells and stream locations: - **Preexisting monitoring wells:** OB01, OB02, OB02A, OB04, OB04A, OB06, OB07, OB07A, OB102, OB105, OB15, and OB25. - Newly installed monitoring wells: MW1B, MW2A, MW2B, MW3A, MW3B, MW04, MW06, MW07, MW08, MW10, MW11A, MW11B, and MW12. - Stream Locations: No VOCs were detected above the recommended MCL in any of the monitored stream locations. - A total of 36 VOCs exceeded the recommended MCL in the following monitoring wells: - **Preexisting monitoring wells:** OB03 (4 exceedances), OB03A (1 exceedance), OB08 (1 exceedance), OB08A (1 exceedance), OB10 (2 exceedances), OB11 (7 exceedances), OB11A (4 exceedances), and OB12 (4 exceedances). - **Newly installed monitoring wells:** MW09 (1 exceedance), MW09 (1 exceedance), MW13A (5 exceedances), and MW13B (5 exceedances). The following include a summary of these 36 VOC concentrations exceeding the recommended MCLs: - o 1,2-Dichloropropane concentration exceeded the MCL of 5 ug/l in observation wells OB03, OB11, OB12, MW13 and MW13B. Concentrations exceeding the MCL for this compound ranged from 5.4 ug/l in MW13A to 7.5 ug/l in MW13B. - o 1,2-Dichloropropane concentration exceeded the MCL of 5 ug/l in observation wells OB03, OB11, OB12, MW13 and MW13B. Concentrations exceeding the MCL for this compound ranged from 5.4 ug/l in MW13A to 7.5 ug/l in MW13B. - O Benzene concentration exceeded the MCL of 5 ug/l in observation well OB11 at 6.9 ug/l. - O Dichloromethane concentration exceeded the MCL of 5 ug/l in observation wells OB07A. - O Cis-1-2-Dichloroethene concentration exceeded the MCL of 70 ug/l in observation wells OB03, OB11, OB11A, MW13, and MW13B. Concentrations exceeding the MCL for this compound ranged from 71 ug/l in OB03 to 160 ug/l in OB11. - O Methylene Chloride concentration exceeded the MCL of 5 ug/l in observation wells OB11 and OB12. Concentrations exceeding the MCL for this compound were 12 ug/l in OB11 and 5.9 ug/l in OB12. - O Tetrachloroethene concentration exceeded the MCL of 5 ug/l in observation wells OB11, OB11A, OB12, MW09, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 14 ug/l in MW09 to 47 ug/l in OB11. - O Trichloroethene concentration exceeded the MCL of 5 ug/l in observation wells OB03, OB03A, OB10, OB11, OB11A, OB12, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 12 ug/l at OB10 to 47 ug/l at OB03. - O Vinyl Chloride concentration exceeded the MCL of 2 ug/l in observation wells OB03, OB08, OB08A, OB10, OB11, OB11A, OB12, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 4.0 ug/l in MW08 to 14 ug/l in OB03. #### **METALS AND OTHER PARAMETERS:** A summary of the metals and other parameters (non-organic contaminants) for this reporting period are listed below. Please refer to Table 3 of this report for additional information on metals and other water quality parameters results. - A total of 14 metals and other non-organic contaminants exceeded the recommended MCL in the following monitoring locations: - **Preexisting monitoring wells:** OB04A, (1 exceedance), OB105 (6 exceedances), and OB11 (1 exceedance). - Newly installed monitoring wells: MW3A (1 exceedance), MW06 (1 exceedance), MW07 (1 exceedance), MW08 (1 exceedance) and MW13A (2 exceedances). - **Stream Locations**: No metal contaminants or other non-organic contaminants were detected above the recommended MCL in any of the monitored stream locations. The following include a summary of these 14 metal concentrations exceeding the recommended MCLs. - Arsenic with a recommended MCL of 0.01 mg/l was exceeded in samples collected from OB04A with a concentration of 0.0105 mg/l and in OB105 with a concentration of 0.0147 mg/l. - O Beryllium with a recommended MCL of 0.004 mg/l was exceeded in a sample collected from OB105 with a concentration of 0.0112 mg/l. - O Cadmium with a recommended MCL of 0.005 mg/l was exceeded in samples collected from OB11 with a concentration of 0.0104 mg/l, in OB105 with a concentration of 0.0109 mg/l, and in MW06 with a concentration of 0.00618 mg/l. - O Chromium with a recommended MCL of 0.1 mg/l was exceeded in a sample collected from OB105 with a concentration of 0.166 mg/l. - Lead with a recommended MCL of 0.015 mg/l was exceeded in samples collected from observation well MW3A with a concentration of 0.0435 mg/l, in OB105 with a concentration of 0.0726 mg/l, and in MW13A with a concentration of 0.0327 mg/l. (Note: The applied MCL for lead is different from other MCLs used in this report. The MCL for lead has been established for public drinking water systems and requires water samples to be collected from the tap. The regulations also require that no more than 10% of customer samples taken at the tap exceed the EPA Action Level of 0.015 mg/l. An action level exceedance is not a violation of water quality standards, but rather a trigger for further utility action. The MCL of 0.015 mg/l used in this report is only for comparative purposes.) - O Mercury with a recommended MCL of 0.002 mg/l was exceeded in samples collected from well OB105 with a concentration of 0.00645 mg/l, and in MW13A with a concentration of 0.00257 mg/l. - O Nitrate with a recommended MCL of 10 mg/l was exceeded in samples collected from well MW07 with a concentration of 29.09 mg/l, and in MW08 with a concentration of 14.79 mg/l. - O As part of a recent study (Nature and Extend Study) under the directive of MDE, the County collected filtered and unfiltered groundwater samples during this semi-annual monitoring event. The purpose of filtering samples was to evaluate turbidity and its potential interferences to metals analysis. The metals analysis conducted on filtered and unfiltered samples indicate noteworthy reductions in concentrations for most of metals in filtered samples. For filtered samples, only two samples exceeded the recommended MCL concentration levels. Cadmium with a concentration of 0.0101 mg/l exceeded the MCL of 0.005 mg/l at observation well OB11 and Arsenic with a concentration of 0.0119 mg/l exceeded the MCL of 0.01 mg/l in OB04A. A total of 12 metals contaminants were detected above the recommended MCL in unfiltered samples. Please note that most of the MCL exceedances for metals were only slightly above the recommended MCLs. Please refer to Table-A, Appendix D (Table of Metals) of this report for additional information on filtered and unfiltered sampling results for metals. Overall, data collected during this reporting period represent typical seasonal fluctuations in water quality with respect to monitored parameters for this landfill. Based on the latest monitoring and sample analysis obtained during this reporting period, there are no indications of any unexpected or unusual results that would require special attention and therefore no further actions are recommended at this time. The County continues to closely monitor the presence of VOCs and other contaminants and will notify MDE prior to the next report in the event that any detection is found to be significantly different from previous levels. Please contact Nasser Kamazani at (240) 777-7717 with any questions about this report. Sincerely, David Lake, Manager Water and Wastewater Policy Group cc:
Robert Hoyt, Director, Department of Environmental Protection Dan Locke, Chief Division of Solid Waste Services, Department of Environmental Protection ## WATER QUALITY MONITORING REPORT for ### **GUDE LANDFILL** ## **Montgomery County, Maryland** #### **SPRING 2012** Prepared by Montgomery County Department of Environmental Protection Prepared for Maryland Department of Environment, Solid Waste Program May 29, 2012 #### TABLE OF CONTENTS #### Introduction - 1. Volatile Organic Chemical Sampling Results - 2. Metals and Inorganic Sampling Results - 3. Physical Water Quality Measurements - 4. Groundwater Elevations and Flow - 5. Conclusions and Trends Analysis #### **APPENDICES** **Appendix A** Gude Landfill Aerial Photo and Sample Locations **Appendix B** Tables of Volatile Organic Compounds **Appendix C** Volatile Organic Compounds – Trend Analysis **Appendix D** Tables of Metals **Appendix E** Table of Groundwater Elevations and Groundwater Elevation Contour Map #### **Introduction:** The Gude Landfill is located on the north side of Gude Drive near Southlawn Lane, northeast of the City of Rockville in Montgomery County. The site encompasses approximately 160 acres, of which approximately 100 acres have been used for the disposal of municipal waste and incinerator residues. It operated from the early 1960s until June 1, 1982. The Gude Landfill was constructed prior to the promulgation of regulations for landfill lining and leachate collection systems. Since 1984, to monitor the quality of ground and surface water, the Montgomery County Department of Environmental Protection (DEP) has been collecting samples at a total of 25 monitoring sites, which include 20 observation wells and 5 stream locations. Beginning in fall 2010, as part of a Nature and Extent Study, sixteen (16) additional monitoring wells have been installed at the site. The purpose of the Nature and Extent Study, directed by MDE and managed by Montgomery County, is to assess and investigate the nature and extent of environmental impacts in the vicinity of and potentially resulting from the Gude Landfill. Locations of these monitoring sites can be found on the attached aerial photo titled Groundwater and Surface Water Monitoring Locations in Appendix A. Sampling and analysis are conducted semi-annually and include laboratory analysis for Volatile Organic Compounds (VOCs), Heavy Metals, field parameters (temperature, pH, conductivity) and other water quality parameters and indicators. This report is organized into four sections, which discuss the results and observations based on the landfill water quality monitoring program. The four sections include a discussion of: - VOC sampling results; - Metals sampling results; - Groundwater elevation and flow; - Trends Analysis/Conclusions The appendices provide data tables for reference, as well as aerial photos and maps. #### 1. Volatile Organic Chemical Sampling Results: - No VOCs were detected above recommended Maximum Contaminant Level (MCL) in the following monitoring wells and stream locations: - **Preexisting monitoring wells:** OB01, OB02, OB02A, OB04, OB04A, OB06, OB07, OB07A, OB102, OB105, OB15, and OB25. - Newly installed monitoring wells: MW1B, MW2A, MW2B, MW3A, MW3B, MW04, MW06, MW07, MW08, MW10, MW11A, MW11B, and MW12. - **Stream Locations:** No VOCs were detected above the recommended MCL in any of the monitored stream locations. - A total of 36 VOCs exceeded the recommended MCL in the following monitoring wells: - **Preexisting monitoring wells:** OB03 (4 exceedances), OB03A (1 exceedance), OB08 (1 exceedance), OB08A (1 exceedance), OB10 (2 exceedances), OB11 (7 exceedances), OB11A (4 exceedances), and OB12 (4 exceedances). - **Newly installed monitoring wells:** MW09 (1 exceedance), MW09 (1 exceedance), MW13A (5 exceedances), and MW13B (5 exceedances). The following include a summary of these 36 VOC concentrations exceeding the recommended MCLs: o 1,2-Dichloropropane concentration exceeded the MCL of 5 ug/l in observation - wells OB03, OB11, OB12, MW13 and MW13B. Concentrations exceeding the MCL for this compound ranged from 5.4 ug/l in MW13A to 7.5 ug/l in MW13B. - o 1,2-Dichloropropane concentration exceeded the MCL of 5 ug/l in observation wells OB03, OB11, OB12, MW13 and MW13B. Concentrations exceeding the MCL for this compound ranged from 5.4 ug/l in MW13A to 7.5 ug/l in MW13B. - O Benzene concentration exceeded the MCL of 5 ug/l in observation well OB11 at 6.9 ug/l. - O Dichloromethane concentration exceeded the MCL of 5 ug/l in observation wells OB07A, - O Cis-1-2-Dichloroethene concentration exceeded the MCL of 70 ug/l in observation wells OB03, OB11, OB11A, MW13, and MW13B. Concentrations exceeding the MCL for this compound ranged from 71 ug/l in OB03 to 160 ug/l in OB11. - O Methylene Chloride concentration exceeded the MCL of 5 ug/l in observation wells OB11 and OB12. Concentrations exceeding the MCL for this compound were 12 ug/l in OB11 and 5.9 ug/l in OB12. - O Tetrachloroethene concentration exceeded the MCL of 5 ug/l in observation wells OB11, OB11A, OB12, MW09, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 14 ug/l in MW09 to 47 ug/l in OB11. - O Trichloroethene concentration exceeded the MCL of 5 ug/l in observation wells OB03, OB03A, OB10, OB11, OB11A, OB12, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 12 ug/l at OB10 to 47 ug/l at OB03. - O Vinyl Chloride concentration exceeded the MCL of 2 ug/l in observation wells OB03, OB08, OB08A, OB10, OB11, OB11A, OB12, MW13A, and MW13B. Concentrations exceeding the MCL for this compound ranged from 4.0 ug/l in MW08 to 14 ug/l in OB03. Note: The above Graph does not include data collected from the newly (2010) installed monitoring wells. #### 2. Inorganic and Metals Sampling Results: A summary of the metals and other parameters (non-organic contaminants) for this reporting period are listed below. Please refer to Table 3 of this report for additional information on metals and other water quality parameters results. - A total of 14 metals and other non-organic contaminants exceeded the recommended MCL in the following monitoring locations: - **Preexisting monitoring wells:** OB04A, (1 exceedance), OB105 (6 exceedances), and OB11 (1 exceedance). - **Newly installed monitoring wells**: MW3A (1 exceedance), MW06 (1 exceedance), MW07 (1 exceedance), MW08 (1 exceedance) and MW13A (2 exceedances). - **Stream Locations**: No metal contaminants or other non-organic contaminants were detected above the recommended MCL in any of the monitored stream locations. The following include a summary of these 14 metal concentrations exceeding the recommended MCLs. - O Arsenic with a recommended MCL of 0.01 mg/l was exceeded in samples collected from OB04A with a concentration of 0.0105 mg/l and in OB105 with a concentration of 0.0147 mg/l. - o Beryllium with a recommended MCL of 0.004 mg/l was exceeded in a sample collected from OB105 with a concentration of 0.0112 mg/l. - O Cadmium with a recommended MCL of 0.005 mg/l was exceeded in samples collected from OB11 with a concentration of 0.0104 mg/l, in OB105 with a concentration of 0.0109 mg/l, and in MW06 with a concentration of 0.00618 mg/l. - O Chromium with a recommended MCL of 0.1 mg/l was exceeded in a sample collected from OB105 with a concentration of 0.166 mg/l. - Lead with a recommended MCL of 0.015 mg/l was exceeded in samples collected from observation well MW3A with a concentration of 0.0435 mg/l, in OB105 with a concentration of 0.0726 mg/l, and in MW13A with a concentration of 0.0327 mg/l. (Note: The applied MCL for lead is different from other MCLs used in this report. The MCL for lead has been established for public drinking water systems and requires water samples to be collected from the tap. The regulations also require that no more than 10% of customer samples taken at the tap exceed the EPA Action Level of 0.015 mg/l. An action level exceedance is not a violation of water quality standards, but rather a trigger for further utility action. The MCL of 0.015 mg/l used in this report is only for comparative purposes.) - o Mercury with a recommended MCL of 0.002 mg/l was exceeded in samples collected from well OB105 with a concentration of 0.00645 mg/l, and in MW13A with a concentration of 0.00257 mg/l. - O Nitrate with a recommended MCL of 10 mg/l was exceeded in samples collected from well MW07 with a concentration of 29.09 mg/l, and in MW08 with a concentration of 14.79 mg/l. - As part of a recent study (Nature and Extend Study) under the directive of MDE, the County collected filtered and unfiltered groundwater samples during this semi-annual monitoring event. The purpose of filtering samples was to evaluate turbidity and its potential interferences to metals analysis. The metals analysis conducted on filtered and unfiltered samples indicate noteworthy reductions in concentrations for most of metals in filtered samples. For filtered samples, only two samples exceeded the recommended MCL concentration levels. Cadmium with a concentration of 0.0101 mg/l exceeded the MCL of 0.005 mg/l at observation well OB11 and Arsenic with a concentration of 0.0119 mg/l exceeded the MCL of 0.01 mg/l in OB04A. A total of 12 metals contaminants were detected above the recommended MCL in unfiltered samples. Please note that most of the MCL exceedances for metals were only slightly above the recommended MCLs. Please refer to Table-A, Appendix D (Table of Metals) of this report for additional information on filtered and unfiltered sampling results for metals. Overall, the results indicate comparable concentrations for metals and other water quality parameters from the last reporting period. Laboratory results for these metals are included in Appendix D, Tables 3 and 4 of this report. #### 3. Physical Water Quality Measurements: Additional physical water quality parameter measurements and analysis were conducted during the latest
monitoring period and the results are included in this report. These water quality parameters are based on the monitoring requirements specified in the approved G&SWM Plan and include the followings: Alkalinity Ammonia Calcium Chloride Nitrate pH Potassium Sodium Specific Conductance. Sulfate TDS Turbidity Results for the above water quality parameters are included in Appendix D, Tables 3 and 4 of this report. #### 4. Groundwater Elevations and Flow: The groundwater elevation measurements of all the monitoring wells for the past monitoring events are included in Table-5 of this report. The results obtained from all the preexisting and recently installed monitoring wells indicate that the groundwater elevation at Gude Landfill has increased by an overall average of 1.2 ft from September 2011 to March 2012. Based on the groundwater elevation measurements collected from all (36) monitoring wells around the perimeter of the landfill, it appears that the groundwater flow at Gude Landfill is consistent with the topography of the Landfill itself. The groundwater appears to be flowing outward from the center toward the edges of the landfill. These outward flow directions seem to be more distinct on the southern and eastern portion of the landfill with minor flow components to the north and northeast. In general, the groundwater flow appears to basically follow the direction of surface water around the Gude Landfill. #### 5. Conclusions/Trend Analysis: Results obtained from the latest monitoring activities (Spring 2012) are similar and comparable to those collected from prior monitoring results for the past several years. Major findings indicate that: - I. There are indications of some low level groundwater and surface water contamination in the vicinity of Gude Landfill including multiple MCL exceedances. - II. Detected contaminants at Gude Landfill mainly involve chlorinated solvent degradation products including 1,1-Dichloroethane, 1,2-Dichloropropane, cis-1,2-Dichloroethene, Tetrachloroethene, Trichloroethene, and Vinyl Chloride. - III. Historically most of the contaminants and MCL exceedances have been detected at OB11/OB11A located on the south side (front side) of the landfill and observation wells OB03/OB03A and MW13A/MW13B on the north side (back side) of the landfill. To provide an overall perspective on the quality of groundwater and surface water around the Gude Landfill, a summary of statistical trend analyses and observations are provided below and are included in Appendix C of this report. Please refer to the attached tables and diagrams for additional information. - Groundwater flow around the landfill appears to follow the general topography of the area where the landfill is located and it follows the general surface water flow direction. The overall surface water flow in the area is towards the east and south away from the landfill. - Most of the detected groundwater contaminants at Gude Landfill are Volatile Organic Compounds (VOCs). These low levels of VOCs detected in groundwater are - generally not transported to surface waters. - The overall number of detections per year has remained relatively constant over the past 8-9 year time period. - While some detected VOC concentrations appear to be trending upwards, the concentration for other VOCs seem to be decreasing over the same period. - Since April 2001, most of all detections exceeding MCL have occurred in observation wells located on the northern and southern part of the landfill which includes OB11/OB11A located on the south side (front side) of the landfill and observation wells OB03/OB03A and MW13A/MW13B on the north side (back side) of the landfill. # Appendix A Gude Landfill Aerial Photo and Sample Locations # **Appendix B** # **Tables of Volatile Organic Compounds** Results in (µg/l) **TABAL 1 - Volatile Organic Compounds** | | 1 | | | | 1 | | | | | | |------|-----------------------------|------|------|-------|------|-------|------|-------|------|------| | | Parameter | OB01 | OB02 | OB02A | OB03 | OB03A | OB04 | OB04A | OB06 | 0807 | | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | ND | ND | 23 | | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | ND | ND | 6.8 | | | ND | ND | ND | | | 1,4-Dichlorobenzene | 1.9 | | ND | 9.7 | 6.3 | | 7.6 | 7 | ND | | | 2-Butanone | ND | | 2-Hexanone | ND | | 4-Methyl-2-Pentanone | ND | | Acetone | ND | | Acrylonitrile | ND | | Benzene | ND | ND | ND | 1.9 | 1.3 | 1.6 | 1.6 | ND | ND | | | Bromochloromethane | ND | | Bromodichloromethane | ND | | Bromoform | ND | 12 | Bromomethane | ND | 201 | Carbon disulfide | ND | Ö | Carbon Tetrachloride | ND | ΙŽ | Chlorobenzene | 1.3 | ND | ND | 3.1 | 3.4 | 1.4 | 1.3 | ND | ND | | PRIN | Chloroethane | ND | ∥ R | Chloroform | ND | | Chloromethane | ND | | cis-1,2-Dichloroethene | 6.2 | ND | ND | 71 | 33 | 14 | 20 | 1.6 | 1.7 | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl Iodide | ND | | Methyl Tertiary Butyl Ether | ND | | ortho-Xylene | NT | | para-Xylene & meta-Xylene | NT | | Styrene | ND | | Tetrachloroethene | ND | ND | ND | ND | ND | 2 | 1.9 | ND | ND | | | Toluene | ND | | trans-1,2-Dichloroethene | ND | ND | ND | 4.8 | 2.3 | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | ND | | trans-1,4-Dichloro-2-buten | ND | | Trichloroethene | ND | ND | ND | 47 | 18 | 1.6 | 1.9 | ND | ND | | | Trichlorofluoromethane | ND | | Vinyl Acetate | ND | | Vinyl Chloride | 1.2 | ND | ND | 14 | ND | ND | ND | ND | ND | | | Xylenes (Total) | ND **TABAL 1 - Volatile Organic Compounds** | | | | 1 | | | 1 | | | 1 | 1 | |-------|-----------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------| | | Parameter | OB07A | OB08 | OB08A | OB10 | OB102 | OB105 | OB11 | OB11A | OB12 | | | 1,1,1,2-Tetrachloroethane | ND | ND | | ND | ND | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | ND | ND | ND | ND | ND | 21 | 15 | 21 | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | ND | ND | 3 | 2.1 | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | 1.6 | 2 | 2.8 | ND | ND | 6.3 | 4.6 | 5.8 | | | 1,4-Dichlorobenzene | ND | 4 | 4.7 | 5 | 1.4 | 3.9 | 17 | 15 | 5.4 | | | 2-Butanone | ND | | 2-Hexanone | ND | | 4-Methyl-2-Pentanone | ND | | Acetone | ND | | Acrylonitrile | ND | | Benzene | ND | ND | 1.1 | | ND | ND | 6.9 | 4.3 | 3.5 | | | Bromochloromethane | ND | | Bromodichloromethane | ND | ND | | ND | ND | ND | ND | ND | ND | | | Bromoform | ND | ND | | ND | ND | ND | ND | ND | ND | | 7 | Bromomethane | ND | 201 | Carbon disulfide | ND | H | Carbon Tetrachloride | ND | 9 | Chlorobenzene | ND | 5.7 | 6.6 | 1.2 | 2.6 | | 41 | | 2.1 | | SPRIN | Chloroethane | ND | 교 | Chloroform | ND | ND | ND | ND
ND | ND | ND | ND
ND | ND | ND | | ူတ | Chloromethane | ND | ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND | ND | | | cis-1,2-Dichloroethene | ND | 17 | 21 | | ND | 14 | 160 | | 23 | | | cis-1,3-Dichloropropene | ND
ND | ND | | Dibromochloromethane | ND
ND | ND
ND | | ND
ND | | ND
ND | ND | ND | ND | | | Dibromomethane | ND | | Dichloromethane | ND
ND | ND | | ND
ND | ND
ND | ND | 12 | | ND | | | Ethylbenzene | ND
ND | ND
ND | | ND
ND | ND
ND | ND
ND | ND | ND | ND
ND | | | Methyl lodide | ND
ND | ND
ND | ND
ND | ND
ND | | | | ND
ND | | | | | | | | | ND | ND | ND | | ND | | | Methyl Tertiary Butyl Ether | ND
NT | ND | ND | ND | ND | ND | | ND | ND | | | ortho-Xylene | NT | | para-Xylene & meta-Xylene | NT | NT | | NT | NT | NT | NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | | ND | ND | | ND | ND | 47 | | 22 | | | Toluene | ND | | trans-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | 4.6 | | 2.5 | | | trans-1,3-Dichloropropene | ND | | trans-1,4-Dichloro-2-buten | ND | ND | | ND | ND | ND | ND | ND | ND | | | Trichloroethene | ND | ND | ND | | ND | 1.4 | 39 | | 17 | | | Trichlorofluoromethane | ND | ND | ND | ND | ND | ND | | ND | 2.2 | | | Vinyl Acetate | ND | ND | | ND | ND | ND | ND | ND | ND | | | Vinyl Chloride | ND | 4 | 5.4 | | ND | ND | 13 | | 6.4 | | | Xylenes (Total) | ND **TABAL 1 - Volatile Organic Compounds** | | | 1 | | | <u> </u> | | | <u> </u> | <u> </u> | 1 | |--------|-----------------------------|------|------|-------|----------|------|------|----------|----------|------| | | Parameter | OB15 | OB25 | ST015 | ST120 | ST65 | ST70 | ST80 | MW1B | MW2A | | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | 3.1 | ND | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND | 3.7 | ND | | 2-Butanone | ND | | 2-Hexanone | ND | | 4-Methyl-2-Pentanone | ND | | Acetone | ND | | Acrylonitrile | ND | | Benzene | ND | | Bromochloromethane | ND | | Bromodichloromethane | ND | | Bromoform | ND | 12 | Bromomethane | ND | 201 | Carbon disulfide | ND | II | Carbon Tetrachloride | ND | ΙŽ | Chlorobenzene | 3.6 | ND | SPRING | Chloroethane | ND | ∥ SP | Chloroform | ND | | Chloromethane | ND | | cis-1,2-Dichloroethene | ND | 4.9 | ND | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | |
Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl lodide | ND | | Methyl Tertiary Butyl Ether | ND | | ortho-Xylene | NT | | para-Xylene & meta-Xylene | NT | | Styrene | ND | | Tetrachloroethene | 1.1 | 3.8 | ND | ND | ND | ND | ND | ND | 2.2 | | | Toluene | ND | ND | ND | ND | 1.6 | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | ND | | trans-1,3-Dichloropropene | ND | | trans-1,4-Dichloro-2-buten | ND | | Trichloroethene | 2.2 | 2.1 | ND | | Trichlorofluoromethane | ND | | Vinyl Acetate | ND | | Vinyl Chloride | 1.9 | ND | | Xylenes (Total) | ND | ND | ND | ND | 3.6 | 2.2 | 1.6 | ND | ND | **TABAL 1 - Volatile Organic Compounds** | | <u> </u> | 11 | | l | | 1 | | | 1 | <u> </u> | |----------|-----------------------------|------|------|------|----------|------|----------|----------|------|----------| | | Parameter | MW2B | MW3A | MW3B | MW04 | 90MM | MW07 | MW08 | 60WM | MW10 | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | ND | ND | ND | 3.3 | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND | | 2-Butanone | ND | | 2-Hexanone | ND | | 4-Methyl-2-Pentanone | ND | | Acetone | ND | | Acrylonitrile | ND | | Benzene | ND | ND | ND | ND | 6.3 | | ND | ND | ND | | | Bromochloromethane | ND | | Bromodichloromethane | ND | | Bromoform | ND | 7 | Bromomethane | ND | 201 | Carbon disulfide | ND | | Carbon Tetrachloride | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND | ND | | 9 | Chlorobenzene | ND | ND | ND | ND | ND | ND
ND | ND
ND | ND | ND | | SPRIN | Chloroethane | ND | ND | ND | ND | ND | ND
ND | ND | ND | ND | | <u> </u> | Chloroform | ND | | ND | ND
ND | ND | ND | ND | ND | ND | | ူ ဟ | Chloromethane | ND | ND | ND | ND
ND | ND | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl lodide | ND | | Methyl Tertiary Butyl Ether | ND | ND | ND | ND | 3.3 | | ND | ND | ND | | | ortho-Xylene | NT | NT | NT | NT | | NT | NT | NT | NT | | | para-Xylene & meta-Xylene | NT | | Styrene | ND | | Tetrachloroethene | | ND | ND | ND | ND | | ND | 14 | ND | | | Toluene | ND | | trans-1,2-Dichloroethene | ND | ND | ND | ND | 1.2 | | ND | ND | ND | | | trans-1,3-Dichloropropene | ND | | trans-1,4-Dichloro-2-buten | ND | | Trichloroethene | ND | ND | ND | ND | ND | | ND | ND | ND | | | Trichlorofluoromethane | ND | | Vinyl Acetate | ND | | Vinyl Chloride | ND | ND | ND | ND | 2 | ND | ND | ND | ND | | | Xylenes (Total) | ND **TABAL 1 - Volatile Organic Compounds** | | | < | Δ | | 4 | α | <u> </u> | |-------------|-----------------------------|-------|----------|------|-------|-------|----------| | | | MW11A | MW11B | 112 | //3 | MW13B | 2 | | | Parameter | Σ | ■ | MW12 | MW13A | | Ě | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | ND | | | | 1,1,1-Trichloroethane | ND | ND | ND | ND | ND | | | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | ND | | | | 1,1,2-Trichloroethane | ND | ND | ND | ND | ND | | | | 1,1-Dichloroethane | ND | ND | ND | 16 | | 15 | | | 1,1-Dichloroethene | ND | ND | ND | ND | ND | | | | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | ND | | | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | | | | 1,2-Dichlorobenzene | ND | ND | ND | ND | ND | | | | 1,2-Dichloroethane | ND | ND | ND | ND | ND | | | | 1,2-Dichloropropane | ND | ND | ND | 5.4 | | 7.5 | | | 1,4-Dichlorobenzene | ND | ND | ND | 5.9 | | 11 | | | 2-Butanone | ND | ND | ND | ND | ND | | | | 2-Hexanone | ND | ND | ND | ND | ND | | | | 4-Methyl-2-Pentanone | ND | ND | ND | ND | ND | | | | Acetone | ND | ND | ND | ND | ND | | | | Acrylonitrile | ND | ND | ND | ND | ND | | | | Benzene | ND | ND | ND | 2.9 | | 4.6 | | | Bromochloromethane | ND | ND | ND | ND | ND | | | | Bromodichloromethane | ND | ND | ND | ND | ND | | | | Bromoform | ND | ND | ND | ND | ND | | | 2 | Bromomethane | ND | ND | ND | ND | ND | | |)
S | Carbon disulfide | ND | ND | ND | ND | ND | | | SPRING 2012 | Carbon Tetrachloride | ND | ND | ND | ND | ND | | | ΙŽ | Chlorobenzene | ND | ND | ND | ND | ND | | | ₩ ₩ | Chloroethane | ND | ND | ND | ND | ND | | | ∥ ტ | Chloroform | ND | ND | ND | ND | ND | | | " | Chloromethane | ND | ND | ND | ND | ND | | | | cis-1,2-Dichloroethene | ND | ND | ND | 97 | | 110 | | | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | | | | Dibromochloromethane | ND | ND | ND | ND | ND | | | | Dibromomethane | ND | ND | ND | ND | ND | | | | Dichloromethane | ND | ND | ND | 3.2 | | 4.2 | | | Ethylbenzene | ND | ND | ND | ND | ND | | | | Methyl Iodide | ND | ND | ND | ND | ND | | | | Methyl Tertiary Butyl Ether | ND | ND | ND | ND | ND | | | | ortho-Xylene | NT | NT | NT | NT | NT | | | | para-Xylene & meta-Xylene | NT | NT | NT | NT | NT | | | | Styrene | ND | ND | ND | ND | ND | | | | Tetrachloroethene | ND | | ND | 28 | | 30 | | | Toluene | ND | ND | ND | ND | ND | | | | trans-1,2-Dichloroethene | ND | ND | ND | 3.5 | _ | 4.3 | | | trans-1,3-Dichloropropene | ND | ND | ND | ND | ND | 5 | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | ND | ND | | | | Trichloroethene | ND | ND | ND | 32 | _ | 32 | | | Trichlorofluoromethane | ND | ND | ND | ND | | 1.3 | | | Vinyl Acetate | ND | ND | ND | ND | ND | | | | Vinyl Chloride | ND | ND | ND | 8.6 | | 12 | | | Xylenes (Total) | ND | ND | ND | ND | ND | | **TABLE 2: Volatile Organic Compounds - Historical Results** | cation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-8 | |----------|-------------------------------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND NS | ND | | 1,1,1-Trichloroethane | ND NS | ND | | 1,1,2,2-Tetrachloroethane | ND NS | ND | | 1,1,2-Trichloroethane | ND NS | ND | | 1,1-Dichloroethane | 2.5 | ND | 2.03 | 1.37 | ND | 2.31 | 1.48 | 1.09 | NS | 1.02 | 1.85 | 0.75 | 1.33 | ND | ND | ND | | | 1,1-Dichloroethene | ND NS | ND | ND | ND | ND | | ND | ND | | | 1,2,3-Trichloropropane | ND NS | ND | | 1,2-Dibromo-3-chloropropan | ND NS | ND | | 1,2-Dibromoethane | ND NS | ND | | 1,2-Dichlorobenzene | ND NS | | NT | 1 | 1.48 | ND | ND | ND | | | 1,2-Dichloroethane | ND NS | | ND | 0.46 | ND | ND | ND | ND | | | 1,2-Dichloropropane | 1.88 | ND | 1.1 | 1.45 | 1.28 | | | ND | NS | | ND | 0.59 | | ND | ND | ND | | | 1,4-Dichlorobenzene | 1.23 | | 1.37 | | 2.16 | | | | NS | ND | 1.94 | 2.81 | 3.19 | | ND | 1.12 | | | 2-Butanone | ND | ND | ND | | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT | NT | NT | | | NT | NT | NT | NT | | ND | ND | ND | ND | ND | ND | | | Acetone | ND | ND | ND | | | | ND | NT | NT | | ND | ND | ND | ND | ND | ND | | | Acrylonitrile | NT | NT | NT | | | | | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Benzene | ND | ND | ND | ND | | ND | | ND | NS | | ND | 0.39 | | ND | ND | ND | | | Bromochloromethane | ND | ND | ND | | | | ND | ND | NS | | NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | ND | | | ND | ND | ND | NS | ND | | Bromoform | ND | ND | ND | | | | | ND | NS | | ND | ND | ND | ND | ND | ND | | | Bromomethane | ND | ND | ND | | | | ND | ND | NS | | ND | ND | ND | ND | ND | ND | | _ | Carbon disulfide | ND | ND | ND | | | ND | ND | ND | NT | NT | ND | ND | ND | ND | ND | ND | | <u>ვ</u> | Carbon Tetrachloride | ND | ND | ND | ND | | ND | ND | ND | NS | | ND | | ND | ND | ND | ND | | OBU | Chlorobenzene | ND | ND | ND | ND | 1.26 | | 1.21 | | NS | ND | 1.03 | 1.57 | 1.43 | | ND | IND | | ا ر | Chloroethane | ND | ND | ND | | ND | ND | ND | ND | NS | ND | ND | 0.25 | | ND | ND | ND | | | Chloroform | ND | ND | ND | | | ND | ND | ND | NS | | ND | 0.23 | 0.74 | | ND | ND | | | Chloromethane | NT | NT | NT | | | NT | NT | ND | NS | ND | | cis-1,2-Dichloroethene | 33.97 | 5.98 | | 16.06 | 34.18 | | | | | ND | 11.8 | | 7.71 | | ND | IND | | | cis-1,3-Dichloropropene | ND | ND | ND | | | ND | ND | ND | NS | | ND | ND
ND | ND | ND | ND | ND | | | Dibromochloromethane | ND | ND | ND | | | ND | ND | ND | NS | ND | ND | | ND | ND | ND | ND | | | Dibromomethane | ND | ND | ND | | | ND | | ND | NS | ND | ND | | ND | ND | ND | ND | | | Dichloromethane | ND | ND | ND | | | ND | ND | ND | NS | ND | ND | | ND | ND | | | | | | ND | ND | ND | | | ND | ND | ND | NS | | | 0.36 | | ND | ND | ND | | | Ethylbenzene
Methyl ledide | ND | ND | ND | | | | | NT | NT | NT | ND | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | ND | ND | | | ND | ND | | | Methyl Tertiary Butyl Ether | NT | NT | NT | | | | | ND | NS | ND | ND | ND
0.04 | 0.77 | | ND | ND | | | ortho-Xylene | ND | ND | ND | | | | | ND | NS | | ND | 0.34 | | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | | ND
ND | | | | ND | NS | ND | ND | ND | ND | NT | NT | NT | | | Styrene | ND | ND | ND | | | | | ND | NS | ND | ND | ND
0.54 | ND | ND | ND | ND | | | Tetrachloroethene | ND | ND | ND | ND | 1.26 | | ND | ND | NS | | ND | 0.51 | | ND | ND | ND | | | Toluene | ND | ND | ND | | | ND | | ND | NS | ND | | trans-1,2-Dichloroethene | 1.08 | | 1.09 | ND | 1.13 | | 1.42 | | | | ND | 0.67 | | | ND | ND | | | trans-1,3-Dichloropropene | | ND | ND | | | | ND | | NS | | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | ND |
| | | | | | | | ND | | | ND | ND | ND | | | Trichloroethene | 5.77 | | | | | | | | NS | | ND | 0.85 | | ND | ND | ND | | | Trichlorofluoromethane | | ND | | | | | | | NS | | ND | | | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | 0.01 | | ND | ND | ND | | | Vinyl Chloride | 5.13 | | 4.4 | 3.32 | 5.26 | | | | | | ND | 2.77 | 5.09 | | ND | | | | Xylene (Total) | NT ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |------------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | ND | 1.13 | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | 1.28 | ND NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND 0.48 | ND | ND | ND | ND | | | 2-Butanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | 0.18 | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | | Bromomethane | ND |)2 | Carbon disulfide | ND | ND | 1.33 | ND | ND | ND | ND | ND | NT | NT | ND | ND | ND | ND | ND | ND | | B 0 | Carbon Tetrachloride | ND | <u></u> | Chlorobenzene | ND | | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT ND | | cis-1,2-Dichloroethene | 12.61 | 4.53 | 6.06 | 1.79 | 1.41 | 1.14 | 1.19 | 1.96 | 1.38 | 1.15 | ND | ND | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND | ND | ND | | ND | | | ND | ND | | ND | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | 1.22 | ND | | | ND | ND | ND | ND | ND | | ND | NT | NT | NT | | | Styrene | ND | ND | ND | | ND | | Tetrachloroethene | ND | ND | 1.67 | ND | ND | ND | ND | ND | | | Toluene | ND | ND | ND | | | | | ND | ND | | ND | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | | ND | | ND | | | trans-1,3-Dichloropropene | ND | ND | | | ND | ND | ND | | | ND | | trans-1,4-Dichloro-2-buten | ND | ND | | | | | | | | | ND | | ND | ND | ND | ND | | | Trichloroethene | ND | 1.36 | | | | | | | | | ND | | | ND | ND | ND | | | Trichlorofluoromethane | ND | ND | | | | | | | | | ND | | | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | 0.01 | | ND | ND | ND | | | Vinyl Chloride | | ND | | | | | | | | ND | ND | | | ND | ND | ND | | | Xylene (Total) | NT | | NT | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | ND | ND | ND | | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | ND | ND | ND | ND | | | ND | | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethane | 1.24 | | 1.1 | ND | ND | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | ND NT | | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | 0.33 | ND | ND | ND | ND | | | 2-Butanone | ND NT | NT | NT | ND | | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND | NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | | ND | ND | ND | ND | | | Bromoform | ND | ⋖ | Bromomethane | ND | | Carbon disulfide | ND NT | NT | ND | ND | ND | ND | ND | ND | | 02 | Carbon Tetrachloride | ND | ω | Chlorobenzene | ND | 0 | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT | NT | NT | NT | NT | NT | | ND | ND | ND | ND | | ND | 1.5 | ND | ND | | | cis-1,2-Dichloroethene | 48.26 | 19.58 | 43.45 | 6.9 | ND | ND | 5.96 | ND | 6.87 | 9.19 | ND | 0.65 | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | ND | ND | | | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Ethylbenzene | | ND | ND | | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | | Methyl Iodide | | ND | ND | | | | | NT | | NT | ND | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT | NT | NT | NT | NT | | | ND | | ortho-Xylene | ND | ND | ND | | | | | ND | ND | | ND | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | | | | | ND | ND | ND | ND | | ND | NT | NT | NT | | | Styrene | ND | ND | ND | | | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Tetrachloroethene | 1.05 | 2.46 | 1.45 | | ND | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Toluene | ND | ND | ND | | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | | ND | | ND | | | trans-1,3-Dichloropropene | | ND | | | | | | | | | ND | | | | ND | ND | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | ND | | | Trichloroethene | 6.68 | 5.14 | 4.6 | | | ND | 1.57 | | 1.39 | | | | | ND | ND | ND | | | Trichlorofluoromethane | | ND | ND | | | | | | | | ND | | | | ND | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | | | ND | ND | ND | | | Vinyl Chloride | 3.45 | | | | | | | | | | ND | | | ND | ND | ND | | | Xylene (Total) | NT ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012 | -S | |----------|-----------------------------|--------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|------------|--------|--------|--------|--------|------|----------| | | 1,1,1,2-Tetrachloroethane | ND | | 1 | 1,1,1-Trichloroethane | ND | | 1 | 1,1,2,2-Tetrachloroethane | ND | | ı | 1,1,2-Trichloroethane | ND | | 1 | 1,1-Dichloroethane | 33.3 | 29.03 | 42.38 | 36.78 | 21.95 | 34.7 | 44.7 | 47.23 | 36.07 | 48.38 | 45 | 13.2 | 36.40 | 23 | ND | | 23 | | 1 | 1,1-Dichloroethene | ND 0.71 | ND | ND | ND | | | 1 | 1,2,3-Trichloropropane | ND | ND | | ND | ND | ND | ND | | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | ND | ND | 1.07 | ND | ND | ND | ND | ND | 1.52 | ND | ND | ND | | | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | | | 1 | 1,2-Dichlorobenzene | 2.44 | 1.4 | 1.41 | ND | 2.1 | 1.51 | 2.83 | 1.82 | 1.34 | | NT | 0.83 | 1.92 | ND | ND | 1 | 1.2 | | - 1 | 1,2-Dichloroethane | 2.33 | 1.89 | 3.03 | 2.58 | 3.87 | 2.95 | | 4.98 | | 4.81 | | 1.24 | 3.84 | ND | | 6 ND | | | | 1,2-Dichloropropane | 10.73 | 10.53 | 11.53 | 9.4 | 13.74 | 9.67 | 15.23 | 14.47 | 12.33 | 16.14 | 15.8 | 3.6 | | | | _ | 6.8 | | 1 | 1,4-Dichlorobenzene | 12.78 | | | 10.01 | 15.05 | 13.83 | | 7.97 | | ND | 13.6 | 11.7 | 11.30 | | ND . | 1 | 9.7 | | | 2-Butanone | ND | ND | ND | | | | | NT | NT | | ND | | ND | ND | ND | ND | <u> </u> | | ŀ | 2-Hexanone | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | ND | _ | | ŀ | 4-Methyl-2-Pentanone | NT | NT | NT | | | | | NT | NT | | ND | | ND | ND | ND | ND | | | ŀ | Acetone | ND | ND | ND | | | ND | | NT | NT | | ND | 0.12 | | | ND | ND | | | ŀ | Acrylonitrile | NT | NT | NT | | | | | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | ŀ | Benzene | 5.28 | 2.4 | 4.29 | | 4.53 | 3.99 | | 4.62 | 3.2 | 5.53 | 4.56 | 1.83 | | | 5. | _ | 1.9 | | ŀ | Bromochloromethane | ND | ND | ND | | | | | ND | ND | | 4.50
NT | | ND | ND | ND | ND | 1.8 | | ŀ | Bromodichloromethane | ND | ND | ND | | | | | ND | ND | | ND | | ND | ND | ND | ND | | | ŀ | Bromoform | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | | Bromomethane | ND | ND | ND | | | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | က | Carbon disulfide | | ND | 1.03 | | | | | | NT | | | | ND | | | | | | 0 | Carbon Tetrachloride | ND | ND | ND | | | ND | | ND | ND | ND | ND
ND | | ND | ND | ND | ND | | | <u>ω</u> | | | | | | | | | | | | | | 2.26 | | ND | ND | 0.4 | | Ō | Chlorobenzene | 4.42 | 4.22 | 3.24 | 4.92 | 3.98 | 5.59 | | 2.32 | 2.04 | 2.76 | | 7.22 | | | | _ | 3.1 | | - 1 | Chloroethane | 1.11 | 1.9 | | | 1.49 | 1.59 | | 1.23 | 1.19 | 1.61 | 1.55 | 0.79 | | | ND | ND | | | l l | Chloroform | ND | ND | ND | | | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | ļ | Chloromethane | NT | NT
50.04 | NT | | | | | ND | ND | | ND | | ND | 5.3 | | 7 ND | | | - 1 | cis-1,2-Dichloroethene |
67.11 | 56.21 | 98.51 | 71.67 | 128.85 | 87.59 | | 161.47 | 120.9 | 164.77 | 156 | 31.7 | 117.00 | | ND | 1.15 | 71 | | | cis-1,3-Dichloropropene | ND | ND | ND | | | ND | | ND | ND | | ND | ND | ND | ND | ND | ND | | | | Dibromochloromethane | ND | ND | ND | | | | | | ND | | ND | | ND | ND | ND | ND | | | - 1 | Dibromomethane | ND | ND | ND | | | | | ND | | ND | ND | | ND | ND | ND | ND | | | l l | Dichloromethane | ND | ND | 6.33 | | | | | ND | | ND | ND | | ND | ND | ND | ND | | | ļ | Ethylbenzene | ND | ND | ND | | | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | l l | Methyl Iodide | ND | ND | ND | | | | | NT | | NT | ND |) | ND | ND | ND | ND | | | | Methyl Tertiary Butyl Ether | NT | NT | NT | | | | | ND | 5.57 | | 2.05 | | 1.71 | | ND | ND | | | | ortho-Xylene | ND | ND | ND | | | | | ND | ND | | ND | | ND | NT | NT | NT | | | l l | para-Xylene & meta-Xylene | ND | ND | ND | | | | ND | 1.33 | | | ND | | ND | NT | NT | NT | | | l | Styrene | ND | ND | ND | ND | | | | ND | | ND | | | Tetrachloroethene | 26.04 | 3.06 | 23.14 | 1.85 | 22.97 | ND | 27.73 | | ND | 4.49 | ND | ND | 11.00 | ND | 6. | 2 ND | | | l | Toluene | ND | ND | ND | ND | | ND | ND | 2.46 | | ND | 1.49 | ND | ND | ND | ND | ND | | | | trans-1,2-Dichloroethene | 4.97 | 4.09 | 6.27 | 5.19 | 11.59 | 7 | 12.95 | 8.87 | 12.43 | 11.02 | 9.59 | 3.11 | 7.01 | 6.3 | 1- | 4 | 4.8 | | | trans-1,3-Dichloropropene | ND | | | trans-1,4-Dichloro-2-buten | ND NT | NT | ND | ND | ND | ND | ND | ND | | | 1 | Trichloroethene | 80.53 | 110.03 | 92.22 | 71.55 | 112.28 | 76.03 | 108.24 | 132.6 | 107.44 | 130.79 | | 17.4 | 81.60 | 21 | 8 | 2 | 47 | | | Trichlorofluoromethane | ND | 3.3 | | | | | | | | ND | 4.88 | ND | ND | ND | | 3 ND | | | 1 | Vinyl Acetate | NT | NT | NT | | | | | | | | NT | 0.01 | | ND | ND | ND | | | | Vinyl Chloride | 16.08 | | | | 30.39 | 19.65 | | | | | | 7.84 | 28.00 | | • | _ | 14 | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | ND | ND | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | 38.51 | 2.73 | 42.13 | 18.85 | 23.61 | 15.56 | 44.14 | 50.9 | 41.01 | 46.99 | 25.3 | 3.23 | 32.40 | ND | ND | 1 | | | 1,1-Dichloroethene | ND 0.57 | ND | ND | ND | | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | 2 | ND | 1.54 | ND | 2.11 | 1.23 | 2.07 | 2 | 1.65 | | NT | 0.42 | 0.81 | ND | ND | ND | | | 1,2-Dichloroethane | 2.77 | ND | 3.3 | 1.82 | 3.59 | 1.33 | 5.52 | 5.07 | 4.4 | 4.1 | ND | ND | 3.30 | ND | 3.7 | ND | | | 1,2-Dichloropropane | 12.68 | ND | 12.09 | 7.02 | 12.72 | 4.05 | 14.78 | 14.83 | 13.07 | 13.54 | 9.1 | 0.92 | 10.80 | ND | 8.1 | | | | 1,4-Dichlorobenzene | 14.11 | 10.38 | 11.61 | 9.64 | 15.61 | 16.31 | 14.76 | 7.67 | ND | ND | 12.6 | 5.92 | 9.28 | ND | ND | 6 | | | 2-Butanone | ND NT | NT | NT | ND | 0.6 | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | 0.13 | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | 6.31 | 4.44 | 4.66 | 2.73 | 5.18 | 3.8 | 6.23 | 4.47 | 5.44 | 4.08 | 4.19 | 1.2 | 4.06 | ND | 4.7 | 7 1 | | | Bromochloromethane | ND NT | | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | | ND | ND | ND | ND | | | Bromoform | ND | ⋖ | Bromomethane | ND | | Carbon disulfide | ND NT | NT | ND | ND | ND | ND | ND | ND | | 03 | Carbon Tetrachloride | ND | <u>ω</u> | Chlorobenzene | 4.71 | 19.21 | 3.6 | 10.33 | 5.24 | 13.9 | 2.8 | 1.98 | 2.87 | 3.73 | 5.52 | 5.21 | 2.78 | ND | 3.3 | 3 | | 0 | Chloroethane | 1.26 | 1.02 | 1.41 | ND | 1.53 | 1.42 | 1.63 | 1.43 | 1.38 | 1.69 | | 0.33 | 1.31 | ND | ND | ND | | | Chloroform | ND | ND | ND | ND | ND | | | Chloromethane | NT ND | ND | ND | ND | ND | 1.54 | ND | 1.5 | ND | | | cis-1,2-Dichloroethene | 79.29 | 3.01 | 102.56 | 41.96 | 117.86 | 29.76 | 150.17 | 168.82 | 141.19 | 137.52 | 84.9 | 6.23 | 98.10 | 11 | ND | 1 | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND 2 | ND | ND | | | Ethylbenzene | ND | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | ND | ND | 1.39 | 1.15 | ND | ND | ND | ND | | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | 41.02 | ND | 30.99 | ND | 29.4 | ND | 33.23 | 1.66 | 26.21 | 3.67 | 7.11 | ND | 17.80 | ND | ND | ND | | | Toluene | ND 1.05 | ND | | trans-1,2-Dichloroethene | 5.71 | 1.22 | 6.22 | 3.1 | 9.08 | 3.72 | 10.82 | 9.93 | 11.68 | 9.08 | 6.06 | 1.01 | 5.93 | ND | 9 |) 2 | | | trans-1,3-Dichloropropene | ND | ND | ND | ND | ND | ND | | | | | ND | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND NT | | ND | | | ND | ND | ND | | | Trichloroethene | 84.92 | | 85.13 | 51.33 | 95.18 | 20.26 | 97.78 | 141.41 | | 113.09 | 66.7 | 2.71 | | | 56 | | | | Trichlorofluoromethane | 3.01 | | | ND | 3.77 | | | | | ND | 3.08 | | 2.47 | | | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | 0.01 | | NT | ND | ND | | | Vinyl Chloride | 18.6 | | 19.56 | 4.62 | 26.98 | 5.96 | | 23.11 | | | | 1.99 | | | | ND | | | Xylene (Total) | | | | | | | | | | | | | | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | ND | ND | ND | | | | ND | | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethane | ND | ND | ND | | ND 0.35 | | 22 | ND | ND | | | 1,1-Dichloroethene | ND | ND | | | ND | | | ND | | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND 0.45 | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND | | | 1,2-Dichlorobenzene | ND NT | 0.46 | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | ND | ND | ND | ND | | | 1,2-Dichloropropane | ND 0.52 | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | 2.22 | ND | 5.11 | ND | 5.96 | 5.53 | 6.19 | ND | ND | ND | 6.06 | 5.92 | 2.91 | ND | ND | 5.9 | | | 2-Butanone | ND | 11.51 | ND | ND | ND | ND | ND | NT | NT | NT | ND | 0.41 | 0.65 | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | 0.49 | 11.90 | 6.6 | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | ND | 1.33 | ND | 1.65 | 1.7 | 1.85 | ND | 1.21 | 1.68 | 1.62 | 1.6 | 2.04 | 2.2 | ND | 1.0 | | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | _ | Bromomethane | ND | 4 | Carbon disulfide | ND NT | NT | ND | ND | ND | ND | ND | ND | | OBO | Carbon Tetrachloride | ND | 5 | Chlorobenzene | ND | ND | ND | ND | 1.11 | 1.05 | 1.19 | ND | ND | ND | 1.09 | 1.18 | 0.90 | ND | ND | 1.4 | | | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT ND | ND | ND | ND | ND | ND | 7.5 | ND | ND | | | cis-1,2-Dichloroethene | 9.25 | 1.38 | 18.27 | 2.59 | 18.58 | 18.76 | 20.95 | 6.45 | 15.43 | 18.92 | 17 | 16.8 | 8.32 | 67 | ND | 1. | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | ND | 2.53 | ND | 1.48 | 1.6 | 1.42 | ND | ND | 1.42 | 1.93 | 1.72 | 1.03 | 7.7 | ND | ND | | | Ethylbenzene | ND | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | 1.52 | ND | 1.15 | ND | 2.23 | 1.93 | 2.07 | ND | 1.34 | 1.99 | 1.25 | 1.69 | 0.70 | 13 | ND | | | | Toluene | ND | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | ND 0.45 | ND | 5.4 | ND | ND | | | trans-1,3-Dichloropropene | | ND | | | | | | | | | ND | | | | ND | ND | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | ND | ND | ND | | ND | | | ND | | ND | ND | ND | ND | | | Trichloroethene | 1.88 | ND | 1.71 | | 2.19 | 1.82 | 2.12 | ND | 1.4 | | | 1.51 | 1.08 | 17 | ND | 1.0 | | | Trichlorofluoromethane | | ND | | | | | | | | | | | ND | | ND | ND | | | Vinyl Acetate | NT | NT | | | | | | | | | | | | ND | ND | ND | | | Vinyl Chloride | | ND | 1.57 | | 1.33 | | 1.7 | | ND | 1.47 | | 1.26 | | | ND | ND | | | Xylene (Total) | | NT | | | | | | | | | | | | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------| | Location | 1,1,1,2-Tetrachloroethane | | ND | | ND | ND | ND | ND | | ND | | | | ND | ND | ND | ND | | | 1.1.1-Trichloroethane | | ND | ND | ND | ND | ND | ND | | ND | | | | | ND | | ND | | | 1,1,2,2-Tetrachloroethane | | ND | ND | ND | ND |
ND | ND | | ND | | | | | ND | | ND | | | 1,1,2-Trichloroethane | | ND | ND | ND | ND | ND | ND | | ND | | | | | ND | | ND | | - | 1,1-Dichloroethane | | | ND | ND | ND | ND | ND | | | | | | ND | ND | | ND | | 1 | 1,1-Dichloroethene | ND | ND | | | | ND | ND | ND | ND | | 1 | 1,2,3-Trichloropropane | | ND | ND | ND | ND | ND | ND | | ND | | | | | ND | | ND | | | 1,2-Dibromo-3-chloropropan | | ND | | ND | ND | ND | ND | | ND | | | | ND | ND | | ND | | | 1,2-Dibromoethane | | ND | | ND | ND | ND | ND | | ND | | | | ND | ND | | ND | | 1 | 1,2-Dichlorobenzene | | | ND | ND | ND | ND | ND | | | | NT | 0.47 | | ND | | ND | | 1 | 1,2-Dichloroethane | | ND | ND | ND | ND | ND | ND | | ND | | | | ND | ND | | ND | | - | 1,2-Dichloropropane | ND | ND | | ND | ND | ND | ND | | ND | | ND | 0.57 | | ND | ND | ND | | 1 | 1,4-Dichlorobenzene | 5.66 | | | 4.58 | 7.3 | | 7.42 | | 4.46 | | 7.33 | | 4.66 | | ND | 7.6 | | 1 | 2-Butanone | | ND | | ND | ND 7.0 | ND | ND | | NT | | | ND | 0.78 | | | ND 7.0 | | 1 | 2-Hexanone | | ND | | ND | ND | ND | ND | | | | | | ND | ND | | ND | | | 4-Methyl-2-Pentanone | | | | NT | | NT | | | | | | .,_ | | ND | ND | ND | | ŀ | Acetone | | | | ND | ND | ND | ND | | | | | ND | 18.60 | | | ND | | ŀ | Acrylonitrile | | NT | NT | NT | NT | NT | NT | | | | | | | ND | | ND | | | Benzene | 1.4 | | | ND | 1.65 | 1.72 | 1.83 | 1.4 | | | | 1.65 | 2.45 | | 2.1 | | | <u> </u> | Bromochloromethane | | | | ND | ND | ND | ND | | ND | | | | ND Zi io | ND | | ND 1.0 | | | Bromodichloromethane | | | | ND | ND | ND | ND | | | | | | | ND | | ND | | | Bromoform | | ND | | ND | ND | ND | ND | | ND | | | | | ND | | ND | | | Bromomethane | | | | | ND | ND | ND | | | | | | | ND | | ND | | | Carbon disulfide | | ND | | ND | ND | ND | ND | | | | | | | ND | | ND | | Ò | Carbon Tetrachloride | | ND | | ND | ND | ND | ND | | ND | | | | ND | ND | | ND | | | Chlorobenzene | | ND | | ND | 1.08 | 1.02 | 1.17 | | ND | 1.07 | 1.14 | 1.14 | 0.87 | | ND | 1.3 | | | Chloroethane | ND | ND | | | | | ND | | ND | | | Chloroform | | | | ND | ND | ND | ND | | | | | | | ND | | ND | | l i | Chloromethane | | NT | | NT | NT | NT | NT | ND | ND | | | | | ND | ND | ND | | l i | cis-1,2-Dichloroethene | 15.36 | 11.88 | 5.65 | 12.82 | 23.31 | 24.08 | 26.31 | 23.78 | 20.7 | 24.4 | 21.8 | | 8.54 | ND | ND | 20 | | l t | cis-1,3-Dichloropropene | ND | | ND | ND | | ND | | | Dibromochloromethane | ND | | | ND | ND | | ND | | | Dibromomethane | ND 2.44 | | | | ND | ND | | ND | | | Dichloromethane | 2.19 | 1.84 | | 1.5 | 2.77 | 3.31 | 2.67 | 2.45 | | 2.98 | | 3.18 | 3.39 | ND | | ND | | | Ethylbenzene | ND | ND | | ND | ND | ND | ND | | | | | | ND | ND | | ND | | | Methyl Iodide | ND NT | NT | | | | ND | ND | | ND | | | Methyl Tertiary Butyl Ether | NT ND | ND | | | | ND | ND | | ND | | | ortho-Xylene | ND | ND | | ND | ND | ND | ND | ND | ND | | | | | NT | | NT | | | para-Xylene & meta-Xylene | ND | | | | NT | | NT | | | Styrene | ND | | | ND | ND | ND | ND | | | Tetrachloroethene | 1.39 | ND | ND | 1.45 | 1.92 | 1.77 | 1.65 | 1.42 | 1.34 | 1.7 | 1.23 | 1.52 | 0.60 | ND | 1.3 | 1.9 | | | Toluene | ND | | ND | | ND | | | trans-1,2-Dichloroethene | ND | ND | 0.55 | ND | ND | | ND | | | trans-1,3-Dichloropropene | | | | | | ND | | | | | | ND | ND | ND | | ND | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | ND | | ND | ND | ND | | | | | ND | ND | | ND | | | Trichloroethene | 2.02 | 1.53 | ND | 1.87 | 2.24 | 1.93 | 2.08 | 1.96 | 1.45 | | | | 1.07 | ND | 1.3 | | | | Trichlorofluoromethane | | | | | ND | ND | ND | | | | | | | ND | | ND | | | Vinyl Acetate | NT | NT | 0.01 | ND | ND | | ND | | | Vinyl Chloride | 1.49 | | | ND | 1.15 | | | 1.37 | | | | | | ND | | ND | | | Xylene (Total) | NT | | NT | | | | ND | | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | ND | ND | ND | ND | NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | 1.32 | ND | 1.08 | ND | 11 | ND | 1.44 | 1.03 | ND | ND | 1.43 | ND | 0.93 | ND | ND | | | | 2-Butanone | ND | ND | ND | ND | ND | NT | ND | NT | NT | NT | ND | 0.57 | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND | ND | ND | ND | ND | NT | ND | NT | NT | NT | ND | 0.14 | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | | ND | ND | ND | ND | | | Bromoform | ND | | Bromomethane | ND | 9 | Carbon disulfide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | OB06 | Carbon Tetrachloride | ND | 7 | Chlorobenzene | ND 0.66 | 0.56 | ND | ND | ND | | O | Chloroethane | ND | | Chloroform | ND | ND | ND | ND | ND | | | Chloromethane | NT ND | ND | ND | ND | ND | 0.91 | ND | ND | ND | | | cis-1,2-Dichloroethene | 2.01 | ND | 2.17 | ND | 2.77 | NT | 2.92 | 2.31 | 2.39 | 2.55 | 2.12 | 1.82 | 1.64 | ND | ND | 1. | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | ND | ND | ND | ND | | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | ND | ND | NT | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | ND | ND | ND | ND | 1.11 | 1.15 | ND | ND | 1.01 | ND | ND | 0.68 | ND | ND | ND | ND | | | Toluene | ND | | trans-1,2-Dichloroethene | ND | ND | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | ND | | | | | | | | | ND | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND | NT | | ND | ND | | ND | ND | ND | | | Trichloroethene | ND | ND | ND | ND | | | | | | | ND | 0.36 | | ND | ND | ND | | | Trichlorofluoromethane | | ND | | | | | | | | | ND | | | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | | NT | | NT | | | ND | ND | ND | | | Vinyl Chloride | | ND | | | | | | | ND | | ND | | | ND | ND | ND | | | Xylene (Total) | | NT | | | | | | | | | | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |------------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND NS | ND | ľ | 1,1,1-Trichloroethane | ND NS | ND | ľ | 1,1,2,2-Tetrachloroethane | ND NS | ND | ľ | 1,1,2-Trichloroethane | ND NS | ND | ſ | 1,1-Dichloroethane | ND NS | ND | ľ | 1,1-Dichloroethene | ND NS | ND | ND | ND | ND | ND | 19 | ND | | ľ | 1,2,3-Trichloropropane | ND NS | ND | ľ | 1,2-Dibromo-3-chloropropan | ND NS | ND | ND | 0.54 | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND NS | ND | ľ | 1,2-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | ND | ND | NS | ND | NT | 0.47 | ND | ND | ND | ND | | ľ | 1,2-Dichloroethane | ND NS | ND | ľ | 1,2-Dichloropropane | ND NS | ND | ND | ND | ND | ND | 5.3 | ND | | ľ | 1,4-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | ND | ND | NS | ND | ND | 0.58 | ND | ND | ND | ND | | ľ | 2-Butanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | ľ | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | ľ | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | ľ | Acetone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | ľ | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | ľ | Benzene | ND NS | ND | ND | ND | ND | ND | 7.9 | ND | | ľ | Bromochloromethane | ND NS | | NT | ND | ND | ND | ND | ND | | ľ | Bromodichloromethane | ND NS | | ND | ND | ND | ND | ND | ND | | ľ | Bromoform | ND NS | | ND | | ND | ND | ND | ND | | . 1 | Bromomethane | ND NS | ND | 07 | Carbon disulfide | 4.62 | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | B | Carbon Tetrachloride | ND NS | ND | ö | Chlorobenzene | ND NS | ND | О 1 | Chloroethane | ND NS | ND | ľ | Chloroform | ND NS | ND | ND | | ND | ND | ND | ND | | | Chloromethane | NT ND | NS | ND | ND | ND | 1.38 | ND | ND | ND | | ľ | cis-1,2-Dichloroethene | ND | ND | ND | ND | 1.81 | ND | ND | ND | NS | 1.45 | 1.63 | 1.3 | 1.48 | ND | ND | 1 | | ľ | cis-1,3-Dichloropropene | ND NS | ND | | Dibromochloromethane | ND NS | ND | ľ | Dibromomethane | ND NS | ND | ľ | Dichloromethane | ND NS | | ND | ND | ND | ND | ND | ND | | ľ | Ethylbenzene | ND NS | ND | | Methyl Iodide | ND NT | NT | | ND | | ND | ND | ND | ND | | ľ | Methyl Tertiary Butyl Ether | NT ND | NS | | ND | ND | ND | ND | ND | ND | | ľ | ortho-Xylene | ND NS | ND | ND | ND | ND | NT | NT | NT | | ľ | para-Xylene & meta-Xylene | ND | ND | ND | ND | ND | | | ND | NS | | ND | | | NT | NT | NT | | ľ | Styrene | ND NS | | ND | | | ND | ND | ND | | ľ | Tetrachloroethene | ND | ND | ND | ND | 1.68 | ND | ND | ND | NS | 1.3 | ND | 1.23 | 1.61 | ND | 23 | ND | | | Toluene | 1.88 | 1.14 | ND | ND | ND | ND | ND | ND | NS | ND | ľ | trans-1,2-Dichloroethene | | ND | ND | ND | | | | ND | | | | | | | | ND | | ľ | trans-1,3-Dichloropropene | | ND | ND | | | | ND | | NS | | ND | | | ND | | ND | | ľ |
trans-1,4-Dichloro-2-buten | | ND | ND | | | | | | | | ND | | | ND | ND | ND | | ŀ | Trichloroethene | ND | ND | ND | | | | | | | | ND | 0.49 | | | | ND | | ľ | Trichlorofluoromethane | | ND | ND | | | | | | | | | | | ND | | ND | | ľ | Vinyl Acetate | | NT | NT | | | | | | | | | | | ND | | ND | Vinyl Chloride | ND NS | ND **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | | | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | ND | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | 1,1-Dichloroethene | ND | | | 1,2,3-Trichloropropane | ND | ND | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | ND | ND | ND | | NT | | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | ND | ND | ND | | ND | 0.23 | ND | ND | ND | ND | | | 2-Butanone | ND NT | NT | NT | ND | | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND | NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | | Bromoform | ND | | ⋖ | Bromomethane | ND | 7 | Carbon disulfide | 8.93 | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | 0 | Carbon Tetrachloride | ND | Ö | Chlorobenzene | ND | 0 | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT ND | ND | ND | ND | ND | 1.20 | ND | ND | ND | | | cis-1,2-Dichloroethene | 1.25 | 1.01 | 1.45 | 1.05 | 2.6 | 2.02 | 2.02 | 2.09 | 1.85 | 3.51 | 3 | 1.66 | 1.80 | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND 5.8 | ND | | | Ethylbenzene | ND | | Methyl Iodide | ND | ND | ND | ND | ND | | | ND | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | 1.41 | 1.75 | 1.15 | 1.41 | 2.56 | 1.59 | 1.46 | 1.91 | 2.12 | 2.66 | 1.81 | 1.94 | 1.82 | 2 | 23 | 2 | | | Toluene | ND | | trans-1,2-Dichloroethene | | ND | ND | | | | | | ND | | ND | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | ND | ND | ND | | | | | | ND | | trans-1,4-Dichloro-2-buten | ND | ND | ND | | | | ND | | NT | NT | ND | • | ND | ND | ND | ND | | | Trichloroethene | ND 0.64 | 0.88 | ND | 21 | ND | | | Trichlorofluoromethane | | ND | ND | | | | ND | | Vinyl Acetate | NT 0.01 | ND | ND | ND | ND | | | Vinyl Chloride | ND | ND | | | ND | ND | ND | | | Xylene (Total) | NT | | NT | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|----------|--------|----------|--------|----------|----------|----------|----------|--------|--------|--------|----------|--------|--------|--------| | | | | | 1 | | | | | | | | | | | | | | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | | l - | 1,1,1-Trichloroethane | ND | ND
ND | ND | ND
ND | | ND
ND | ND
ND | ND
ND | ND
ND | ND | | | ND
ND | ND | ND | ND | | l - | 1,1,2,2-Tetrachloroethane | ND | | ND | ND
ND | | | | | | ND | | | ND
ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | ND | ND | | | | | | ND | ND D | | | | ND | ND | ND | | | 1,1-Dichloroethane | ND | ND | ND | ND
ND | ND | 1.23 | | ND
ND | ND | ND | 1.2 | 0.46 | 0.87 | | ND | ND | | | 1,1-Dichloroethene | ND | ND | ND | | | | | | ND | ND | | | ND | ND | ND | ND | | l . | 1,2,3-Trichloropropane | ND | ND | ND | ND | | ND | | ND G | ND | ND | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | | | | | ND | ND | ND | 0.54 | | ND | ND | ND | | | 1,2-Dibromoethane | ND | ND | ND | ND | | | | ND | ND | ND | | ND | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | ND | 1.01 | | NT | | ND | ND | | ND | | NT | 0.59 | | ND | ND | ND | | l . | 1,2-Dichloroethane | | | | NT | | | | | ND | ND | ND | 0.36 | | ND | ND | ND | | l l | 1,2-Dichloropropane | | ND | ND | ND | 1.78 | 1.59 | | | ND | 1.24 | 1.16 | 1.19 | 0.78 | | ND | 1.6 | | | 1,4-Dichlorobenzene | | ND | | NT | 2.1 | 3.35 | | | ND | ND | 2.15 | 2.92 | 1.84 | | ND | 4 | | | 2-Butanone | ND | ND | ND | ND | | | | | | NT | | | ND | ND | ND | ND | | ľ | 2-Hexanone | ND | ND | ND | ND | | | | | NT | NT | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | NT | NT | NT | | | | | NT | NT | | ND | ND | ND | ND | ND | | | Acetone | ND | | ND | ND | | | | | NT | NT | 2.7 | 0.21 | 0.50 | | ND | ND | | | Acrylonitrile | | NT | NT | NT | | | | | NT | NT | ND | | ND | ND | ND | ND | | l (| Benzene | ND | ND | ND | ND | 1.09 | | | | ND | ND | ND | 0.63 | 0.66 | ND | ND | ND | | | Bromochloromethane | ND | | ND | ND | | | | | ND | ND | | | ND | ND | ND | ND | | l l | Bromodichloromethane | ND | ND | ND | ND | | ND | | ND | | Bromoform | ND | ND | ND | ND | | | | ND | l [| Bromomethane | ND | ND | ND | ND | ND | ND | | | ND | ND | ND | 0.24 | ND | ND | ND | ND | | 80 | Carbon disulfide | ND | ND | ND | ND | | ND | | NT | NT | NT | | | ND | ND | ND | ND | | m | Carbon Tetrachloride | ND | | ND | ND | | ND | ō | Chlorobenzene | ND | ND | ND | ND | 4.81 | 4.14 | | | ND | 22.02 | 1.95 | 3.13 | 3.31 | 6.1 | ND | 5.7 | | | Chloroethane | ND 0.41 | 0.55 | ND | ND | ND | | | Chloroform | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | 1 [| Chloromethane | | NT | | NT | | | | ND | ND | ND | ND | ND | ND | | ND | ND | | l [| cis-1,2-Dichloroethene | 1.76 | | 1.34 | ND | 9.92 | 8.88 | 11.07 | 3.92 | 3.1 | 10.93 | 10.4 | 10.3 | 8.39 | 8.9 | ND | 17 | | l [| cis-1,3-Dichloropropene | ND | ND | ND | ND | | ND | I [| Dibromochloromethane | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | . , , | ND | ND | ND | ND | | [| Dibromomethane | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | l [| Dichloromethane | ND | [| Ethylbenzene | ND | ND | ND | ND | | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | | | Methyl lodide | ND | | | ND | | | | | NT | NT | ND | 0.38 | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | ND | ND | ND | 0.44 | ND | ND | ND | ND | | | ortho-Xylene | ND | ND | ND | ND | | | | | ND | ND | ND | ND | ND | NT | NT | NT | |] [| para-Xylene & meta-Xylene | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | NT | NT | NT | | [| Styrene | ND | <u> </u> | Tetrachloroethene | ND | | Toluene | ND | ND | ND | ND | ND | ND | | ND | | trans-1,2-Dichloroethene | ND | ND | ND | ND | 1.22 | 1.11 | 1.26 | ND | ND | ND | ND | 0.87 | 0.66 | ND | ND | ND | | | | | ND | | ND | | | | | ND | ND | | | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | | | NT | | | ND | ND | ND | ND | | | Trichloroethene | | | | | | | | | ND | | ND | 0.42 | | ND | ND | ND | | | | | | | | | | | | | | | | ND | ND | ND | ND | | | | | | | | | | | | | | NT | 0.02 | | | ND | ND | | | Vinyl Chloride | ND | ND | ND | ND | 2.67 | 2.47 | | | ND | 2.04 | 2.35 | 2.91 | 3.18 | | ND | 4 | **TABLE 2: Volatile Organic Compounds - Historical Results** | | | | | 2. 10. | | | | | | | .01100 | | | | | | | |----------|-----------------------------|--------|--------|--------|------|------|-------|------|-------|--------|--------|--------|--------|--------|----------|--------|--------| | Location | Parameter | 2004-F | 2005-S | 2005-F | | | | | | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | ND | ND | ND | | | | ND | ND | ND | ND | . , | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | ND | | ND | | | | | ND | | 1,1,2-Trichloroethane | | ND | ND | | | ND | | | ND | | 1,1-Dichloroethane | | ND | ND | ND | ND | 1.43 | 1.05 | ND | ND | ND | 1.47 | 0.44 | 0.97 | ND | ND | ND | | | 1,1-Dichloroethene | | ND | ND | | | | | ND | ND | 1.07 | ND | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | ND | ND | | | | | | ND | | 1,2-Dibromo-3-chloropropan | | ND | ND | | | | | | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | ND | | ND | | | | | ND | ND | NT | 0.32 | ND | ND | ND | ND | | | 1,2-Dichloroethane | | ND | | ND | ND | ND | | | ND | ND | ND | 0.38 | ND | ND | ND | ND | | | 1,2-Dichloropropane | ND | ND | | ND | 2.53 | 2.17 | 2.33 | 1.22 | ND | 2.11 | 2.02 | 1.47 | 1.10 | ND | ND | 2 | | | 1,4-Dichlorobenzene | ND | ND | | ND | 5.86 | 4.47 | 4.75 | | ND | ND | 3.97 | 3.34 | 2.83 | ND | ND | 4.7 | | | 2-Butanone | | ND | | ND | | | | | | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | | ND | ND | | | | | | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | NT | | NT | | NT | NT | NT | NT | NT | ND | | ND | ND | ND | ND | | | Acetone | | ND | | | | | | | NT | NT | ND | ND | ND | ND | ND | ND | | | Acrylonitrile | | NT | | NT | | | | | NT | NT | ND | ND | ND | ND | ND | ND | | | Benzene | | ND | ND | ND | 1.39 | 1.23 | 1.26 | | ND | 1.09 | 1.03 | 0.89 | 0.99 | ND | ND | 1.1 | | | Bromochloromethane | | ND |
ND | ND | | | | | ND | ND | NT | | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | | | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Bromoform | | ND | | ND | ◂ | Bromomethane | | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | B08, | Carbon disulfide | | ND | | | | | | | | NT | ND | | ND | ND | ND | ND | | | Carbon Tetrachloride | | ND | ND | ND | | | | ND | | Chlorobenzene | | ND | ND | ND | 5.54 | 4.84 | | 2.27 | | 3.43 | 3.38 | 3.93 | 4.22 | | ND | 6.6 | | 0 | Chloroethane | ND | ND | ND | ND | | | | ND | ND | ND | ND | 0.47 | 0.62 | <u> </u> | ND | ND | | | Chloroform | | ND | | | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Chloromethane | | NT | | | | | NT | ND | ND | ND | ND | ND | 0.89 | | ND | ND | | | cis-1,2-Dichloroethene | 2.79 | | 3.73 | 4.33 | | 14.02 | | 10.07 | 8.42 | 22.57 | 21.2 | 13.4 | 14.10 | | ND | 21 | | | cis-1,3-Dichloropropene | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Dibromochloromethane | | ND | ND | | | | | ND | | Dibromomethane | | ND | ND | | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Dichloromethane | | ND | ND | ND | | ND | | ND | ND | ND | ND | . , , | ND | ND | ND | ND | | | Ethylbenzene | | ND | | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Methyl Iodide | | ND | | | | | | | NT | NT | ND | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | NT | | | | | | | ND | ND | ND | 0.42 | | ND | ND | ND | | | ortho-Xylene | ND | ND | ND | ND | | | | ND | ND | ND | ND | ND | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | ND | | | | | | | ND | ND | ND | | ND | NT | NT | NT | | | Styrene | | ND | ND | | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Tetrachloroethene | ND | ND | ND | ND | | | | ND | | Toluene | | ND | | | | ND | | | ND | ND | ND | | ND | ND | ND | ND | | | | | ND | | ND | 1.79 | | | | ND | 1.48 | | | | | ND | ND | | | trans-1,3-Dichloropropene | | ND | | ND | | | | | | ND | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | ND | | | | | | | | NT | ND | | ND | ND | ND | ND | | | Trichloroethene | 2.34 | | 2.44 | | | | | | ND | 1.52 | | | | | ND | ND | | | Trichlorofluoromethane | | ND | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | 0.01 | | | ND | ND | | | Vinyl Chloride | | ND | | ND | 4.03 | 3.44 | | | ND | 5.16 | | 4.11 | 4.76 | | ND | 5.4 | | | Xylene (Total) | NT ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | 3.7 | 1.99 | 2.99 | ND | ND | 2.2 | 4.99 | 1.04 | 1.51 | ND | 3.49 | ND | 5.60 | ND | ND | ND | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | 1.19 | ND | ND | ND | NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND 0.64 | ND | ND | ND | | | 1,2-Dichloropropane | 3.11 | 2.01 | 2.36 | 1.08 | ND | 1.48 | 4.46 | 1.55 | 1.84 | ND | 2.53 | 1.26 | 2.65 | ND | ND | 2. | | | 1,4-Dichlorobenzene | 2.43 | 2.03 | 2.53 | ND | 11 | 1.02 | 6.22 | ND | ND | ND | 4.84 | 2.1 | 5.54 | ND | ND | | | | 2-Butanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT | NT | NT | NT | NT | NT | ND | NT | NT | | ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | 1.67 | ND | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | 2.14 | ND | 1.87 | ND | ND | ND | 2.86 | ND | 1.1 | ND | 1.72 | 0.82 | 2.04 | ND | 2.4 | 1. | | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | ND | ND | ND | ND | | _ | Bromomethane | ND 0.22 | ND | ND | ND | ND | | 2 | Carbon disulfide | 1.25 | ND | ND | ND | ND | ND | 1.03 | NT | NT | NT | ND | ND | ND | 2.3 | ND | ND | | ם | Carbon Tetrachloride | ND | 5 | Chlorobenzene | ND | ND | ND | ND | ND | ND | 1.01 | ND | ND | ND | ND | 0.32 | 0.98 | ND | ND | 1. | | | Chloroethane | ND 0.24 | 0.68 | ND | ND | ND | | | Chloroform | ND | | Chloromethane | NT | NT | NT | | | NT | NT | ND | ND | ND | ND | ND | ND | 6.2 | ND | ND | | | cis-1,2-Dichloroethene | 22.03 | 10.04 | 21.18 | 4.81 | ND | 13.7 | 34.09 | 20.83 | 9.73 | ND | 17.9 | 11.5 | 24.00 | 9.6 | ND | 2 | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl lodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | ND | 2.28 | ND | ND | ND | 2.47 | ND | ND | ND | ND | 1.03 | 2.86 | 1.95 | ND | 2.3 | 1. | | | Toluene | ND | ND | ND | | | ND | | trans-1,2-Dichloroethene | 1.8 | 1.07 | 1.96 | ND | ND | ND | 5.04 | 1.12 | 1.49 | ND | 2.39 | 1.18 | 3.94 | ND | 3.9 | ND | | | trans-1,3-Dichloropropene | ND | | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | | | ND | ND | | | | ND | ND | | ND | ND | ND | | | Trichloroethene | 33.16 | 15.67 | 23.54 | 8.76 | ND | 10.6 | 28.64 | 1.31 | 3.73 | ND | 13.3 | 5.27 | 13.40 | ND | 11 | | | | Trichlorofluoromethane | ND | ND | | ND | ND | ND | ND | | | | ND | | ND | ND | ND | ND | | | Vinyl Acetate | NT | NT | | | NT ND | ND | ND | ND | ND | | | Vinyl Chloride | 9.43 | 5.66 | | | ND | 2.43 | 16.03 | 2.15 | 12.62 | | 6.07 | 2.39 | 11.70 | ND | 17 | ' | | | Xylene (Total) | NT | | | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------------|--------|--------|----------|----------|--------|----------|----------|----------|--------|--------|----------|--------|----------|--------|--------|----------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 12 | ND | ND | ND | ND | | NT | | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | 1,2-Dichloropropane | ND | ND | ND | ND | | | | ND | ND | | ND | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | ND | 1.78 | 2.32 | | 12 | 2.03 | | 1.81 | 1.43 | | ND | 1.6 | 1.12 | | ND | IND | | | 2-Butanone | ND | ND | ND | ND | | ND | | NT | NT | NT | ND | | ND | ND | ND | ND | | | 2-Hexanone | ND | ND | ND | ND | | | | | NT | NT | ND | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT | NT | NT | | | | | NT | NT | | ND | ND | ND | ND | ND | ND | | | Acetone | ND | ND | ND | ND | | | | | NT | NT | ND | ND | 0.53 | | ND | ND | | | Acrylonitrile | NT | NT | NT | NT | | | | NT | | NT | ND | ND | ND | ND | ND | ND | | | Benzene | ND | ND | ND | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | | Bromochloromethane | ND | ND | ND | ND | | | | ND | ND | | NT | | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | | | ND | ND | | | ND | ND | | | | | Bromodichloromethane
Bromoform | ND | ND | ND | ND | | | | ND | | | ND
ND | | ND | ND | ND | ND
ND | | | | ND | ND | ND | ND
ND | | | | ND
ND | ND | | | 0.25 | | ND | ND | | | 02 | Bromomethane | | | | ND
ND | | | | NT | | | ND | | | | ND | ND | | 10 | Carbon disulfide | ND | ND | ND
ND | ND
ND | | ND
ND | ND
ND | ND | NT | NT | ND | ND | ND
ND | ND | ND | ND | | Ď | Carbon Tetrachloride | ND | ND | | | | | | | ND | ND | ND | | | ND | ND | ND | | <u></u> | Chlorobenzene | ND | 1.17 | 1.31 | 1.54 | 1.65 | 1.74 | | 1.65 | | 3.43 | 2.27 | 1.7 | 1.51 | | ND | : := | | | Chloroethane | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | 0.05 | | ND | ND | ND | | | Chloroform | ND | ND | ND | ND | | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Chloromethane | NT | NT | NT | | | | | ND | | cis-1,2-Dichloroethene | ND | 1.34 | 2.27 | 1.28 | | 2.14 | | 1.75 | | 1.54 | 1.38 | 1.13 | | | ND | ND | | | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | | ND | | Dibromochloromethane | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dibromomethane | ND | ND | ND | | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dichloromethane | ND | | Ethylbenzene | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | | | Methyl Iodide | ND | ND | ND | ND | | | | NT | | NT | ND | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | ND | ND | ND | 0.47 | ND | ND | ND | ND | | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | ND | | Toluene | ND | | trans-1,2-Dichloroethene | ND | | | trans-1,3-Dichloropropene | | ND | ND | | | | | | ND | | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | ND | | | | | | | | | ND | | | ND | ND | ND | | | Trichloroethene | | ND | | ND | | | | | | | ND | | | ND | ND | ND | | | Trichlorofluoromethane | | ND | | | | | | | | | ND | | ND | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | | | | NT | | | ND | ND | ND | | | Vinyl Chloride | 2.98 | | 2.33 | | 1.11 | | | | ND | | ND | | | ND | ND | ND | | | | 2.30 | | 2.00 | |
1.11 | | · • • | | I. 10 | ı | שויו | טויו | NT | ı. 10 | שאון | שאון | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-------------------------------|--------|--------|--------|--------|--------|----------|------------|--------|--------|--------|----------|----------|--------|--------|----------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | ND | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | ND | ND | ND | ND | ND | ND | | ND | ND | | NT | | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | 1,2-Dichloropropane | ND | ND | ND | ND | | ND | | ND | | | ND | ND | 0.55 | | ND | ND | | | 1,4-Dichlorobenzene | 1.38 | | 1.03 | | | ND | 2.23 | | 1.46 | | 3.38 | 0.72 | 3.32 | | ND | ; | | | 2-Butanone | ND | ND | ND | ND | ND | ND | | NT | NT | | ND | - | ND | ND | ND | ND | | | 2-Hexanone | ND | ND | ND | ND | | | | NT | | NT | ND | 0.23 | | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT | NT | NT | NT | | NT | | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Acetone | ND | ND | ND | ND | ND | | | NT | | NT | 1.27 | | 31.10 | | ND | ND | | | Acrylonitrile | NT | NT | NT | NT | | | | NT | | NT | ND | ND | ND | ND | ND | ND | | | Benzene | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | ND | 0.90 | | ND | ND | | | Bromochloromethane | ND | ND | ND | ND | | | | ND | ND | | NT | | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Bromoform | ND | ND | ND | ND | ND | | | ND | | | ND | | ND | ND | ND | ND | | | Bromomethane | ND | ND | ND | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | 05 | Carbon disulfide | ND | ND | ND | ND | ND | ND | | NT | NT | NT | ND | | ND | ND | ND | ND | | 1(| Carbon Tetrachloride | ND | ND | ND | ND | | | | ND | ND | | ND | į | ND | ND | | ND | | Ď | | ND | ND | ND | ND | ND | | | ND | | ND | ND
ND | .,, | 0.55 | | ND | | | <u></u> | Chlorobenzene
Chloroethane | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND
ND | ND
ND | 0.89 | | ND
ND | ND | | | | ND | ND | ND | ND | ND | ND | | ND | ND | | | | ND | ND | | ND | | | Chloroform | | | NT | | | | | | | | ND |) | | | ND | ND | | | Chloromethane | NT | NT | 3.71 | NT | | NT
ND | NT
8.03 | ND | | ND | ND 44.4 | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | 3.19 | | | | ND | | | | 7.14 | | 11.1 | 0.97 | | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dibromochloromethane | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | .,, | ND | ND | ND | ND | | | Dibromomethane | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | .,, | ND | ND | ND | ND | | | Dichloromethane | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | 0.77 | | ND | ND | | | Ethylbenzene | ND | ND | ND | ND | ND | ND | | ND | ND | | ND |) | ND | ND | ND | ND | | | Methyl lodide | ND | ND | ND | ND | ND | | | NT | | | ND | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT | NT | NT | NT | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | ortho-Xylene | ND | ND | ND | ND | | | | ND | ND | | ND | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | ND | | | | ND | ND | | ND | | ND | NT | NT | NT | | | Styrene | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Tetrachloroethene | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | .,, | ND | ND | ND | ND | | | Toluene | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | ND | ND | ND | | | | ND | | | | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | ND | ND | ND | | ND | | | ND | | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | ND | ND | ND | | | | | | | ND | | | ND | ND | ND | | | Trichloroethene | | ND | ND | ND | | ND | | | | ND | 1.25 | | 1.38 | | 2.1 | | | | Trichlorofluoromethane | | ND | ND | ND | | | | | | | ND | | | ND | ND | ND | | | Vinyl Acetate | NT | NT | NT | | NT | ND | ND | ND | ND | | | Vinyl Chloride | 1.01 | ND | 1.31 | ND | ND | ND | 2.04 | | ND | ND | 1.51 | ND | 3.03 | ND | ND | ND | | | Xylene (Total) | NT | NT | | NT | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012- | -S | |--------------|-----------------------------|------------|----------|----------|--------|--------|--------|--------|----------|----------|--------|----------|------------|----------|---|--------|-------|-----| | | 1,1,1,2-Tetrachloroethane | ND | | 1 | 1,1,1-Trichloroethane | ND | ND | ND | ND | ND | | | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | 1 | 1,1,2-Trichloroethane | ND | ND | ND | ND | ND | ND | | ND | 1.52 | | ND | | ND | ND | ND | ND | | | 1 | 1,1-Dichloroethane | 16.58 | 12.43 | 17.06 | 13.27 | 15.9 | 29.18 | 29.33 | 11.14 | | 31.01 | 33.4 | 20.4 | 15.10 | ND | ND | 1 | 21 | | 1 | 1,1-Dichloroethene | ND | ND | ND | | | | | | ND | 0.89 | 1.03 | 0.45 | 0.93 | | | ND | | | - 1 | 1,2,3-Trichloropropane | ND | ND | ND | | | | | ND | ND | | ND | | ND | ND | ND | ND | | | l | 1,2-Dibromo-3-chloropropan | 1.56 | | ND | | | | | ND | | ND | ND | | ND | ND | ND | ND | | | ŀ | 1,2-Dibromoethane | ND | ND | ND | | | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | ŀ | 1,2-Dichlorobenzene | 1.77 | 1.03 | | ND | 2.89 | 2.38 | | 1.03 | | | NT | 1.75 | 1.51 | | ND | IND | | | ŀ | 1,2-Dichloroethane | 1.07 | 1.4 | 1.28 | 1.38 | 3.81 | | 5.36 | 3.16 | 3.68 | 4.66 | 4.72 | | 3.94 | | ND | ND | | | ŀ | 1,2-Dichloropropane | 3.74 | | 3.41 | 3.47 | 8.11 | 7.99 | 8.27 | 4.67 | 6.31 | 8.28 | 8.15 | 4.9 | 6.10 | | 7.2 | + | 6.3 | | ŀ | 1,4-Dichlorobenzene | 3.15 | | | | 13.38 | 12.63 | | 2.46 | | | 14.6 | 9.13 | 9.85 | • | ND | 1 | 17 | | ŀ | 2-Butanone | ND | ND | ND | | | | | NT | NT | | ND | ND | 0.95 | | ND | ND | | | ŀ | 2-Hexanone | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | ND | | | ŀ | 4-Methyl-2-Pentanone | NT | NT | NT | | | | | NT | NT | | ND | | ND | ND | ND | ND | | | ŀ | Acetone | ND | ND | ND | | | ND | | NT | NT | | ND | ND | 24.60 | | ND | ND | | | ŀ | Acrylonitrile | NT | NT | NT | | | | | NT | NT | NT | ND
ND | | ND | ND | ND | ND | | | ŀ | Benzene | 3.17 | 3.43 | | 1.43 | 9.78 | 9.69 | 10.69 | 2.04 | | 9.56 | | ND
4.22 | 8.29 | | 12 | + | | | ŀ | Bromochloromethane | 3.17
ND | ND | ND | ND | 1.94 | 2.25 | | _ | ND | | 9.37 | 4.32 | ND | 5.2
ND | | | 6.9 | | ŀ | | ND | ND
ND | ND
ND | | | | | ND
ND | ND
ND | | NT | | ND
ND | ND | ND | ND | | | - 1 | Bromodichloromethane | ND | ND | ND
ND | | | | | ND
ND | ND
ND | | ND | | ND
ND | ND | ND | ND | | | ļ | Bromoform | ND
ND | | | | | | | | | | ND | | | | ND | ND | | | ← | Bromomethane | | ND | ND | | | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | | | ~ | Carbon disulfide | | ND | ND | | | | | | NT | | ND | .,_ | ND | ND | ND | ND | | | \mathbf{a} | Carbon Tetrachloride | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | ō | Chlorobenzene | 19.64 | <u> </u> | 15.03 | 12.61 | 60.16 | 56.32 | | 11.69 | | 52.75 | | 28.3 | 34.30 | | ND | | 41 | | | Chloroethane | ND | ND | ND | | | ND 0.57 | | | ND | | | l l | Chloroform | ND | ND | ND | | | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | ļ | Chloromethane | NT | NT | | | | | | ND | ND | | ND | | ND | | ND | ND | | | l l | cis-1,2-Dichloroethene | 41.73 | | | 45.81 | 149.39 | 164.85 | | 92.93 | 137.27 | 190.55 | 184 | 123 | 73.60 | | ND | | 160 | | l l | cis-1,3-Dichloropropene | ND | ND | ND | | | ND | | ND | ND | | ND | | ND | ND | ND | ND | | | l l | Dibromochloromethane | ND | ND | ND | | | | | ND | ND | | ND | | ND | ND | ND | ND | | | l l | Dibromomethane | ND | ND | ND | | | | | ND | | l | Dichloromethane | ND | 4.41 | | 2.51 | 42.44 | 42.01 | 35.48 | 9.24 | 19.47 | 28.72 | 30.6 | 7.21 | 24.20 | | 18 | | 12 | | | Ethylbenzene | ND | ND | ND | | | | | ND | | l | Methyl Iodide | ND | ND | | | | | | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | l | Methyl Tertiary Butyl Ether | NT | NT | NT | NT | NT | | NT | 2.2 | ND | 6.41 | 2.67 | ND | 1.65 | 5.6 | ND | | 2.6 | | | ortho-Xylene | ND NT | NT | NT | | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | | Styrene | ND | | Ī | Tetrachloroethene | 36.32 | 34.22 | 26.31 | 20.17 | 65.48 | 62 | 60.22 | 32.4 | 52.48 | 67.92 | 43.9 | 35.6 | 19.60 | 26 | 44 | ļ | 47 | | | Toluene | 1.45 | ND | ND | ND | ND | ND | | ND | | ND | | | trans-1,2-Dichloroethene | 1.49 | 1.71 | 1.24 | 1.09 | 6.19 | 5.6 | 8.31 | 2.88 | 8.83 | 7.15 | 6.37 | 3.19 | 2.78 | 4.9 | 3.3 | 3 | 4.6 | | Ī | trans-1,3-Dichloropropene | ND | ND | | | ND | | | trans-1,4-Dichloro-2-buten | ND NT | NT | | ND | | ND | ND | ND | ND | | | | Trichloroethene | 28.57 | | 25.32 | 20.17 | 55.99 | 52.41 | | 28.56 | 42.66 | 53.74 | | 31.2 | 33.90 | 28 | | | 39 | | | Trichlorofluoromethane | 3.22 | | | | 4.37 | 4.25 | | | | | | 1.61 | 3.78 | | ND | | 3.3 | | | Vinyl Acetate | | NT | | | | | | | | | NT | 0.25 | | ND | ND | ND | | | | Vinyl Chloride | 3.54 | | | | | 12.02 | | 4.49 | | | | 7.43 | 20.90 | | ND | T | 13 | | | | | | | • | | | | | | | | | | | | | | SPRING 2012
Report Note: MCL exceedances are indicated in Red Page 16 of 41 **TABLE 2: Volatile Organic Compounds - Historical Results** | | Parameter 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane | 2004-F
ND
ND | 2005-S
ND | 2005-F
ND | | | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|---|--------------------|--------------|--------------|-------------------|--------------------|--------------------|--------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------|----------|----------|----------| | | 1,1,1-Trichloroethane
1,1,2,2-Tetrachloroethane | | IND | | ND | ND I | ND | | 1,1,2,2-Tetrachloroethane | | ND | ND | | | | | ND | | | | | ND | ND | | | | | | | ND | ND
ND | | | | | | | | ND
ND | | ND | ND | ND
ND | ND | | | 1 1 2 Trichloroothono | | ND | | | | | | ND | | | ND
ND | | | ND | | ND
ND | | | 1,1,2-Trichloroethane 1,1-Dichloroethane | 26.32 | 9.72 | 30.41 | 27.58 | 6.36 | 14.01 | 28.55 | 28.9 | 24.24 | 23.08 | ND 27.8 | | 16.40 | | ND
ND | ND
15 | | | 1,1-Dichloroethene | | ND | ND | | | | | 26.9
ND | | | | 16.8 | 1.07 | | | | | | • | | ND | | | | | | ND
ND | | | ND | ND | ND | | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | ND | | ND | .,, | ND
ND | ND
ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | ND
ND | ND
ND | | | | | ND
ND | | | ND | .,, | ND
ND | | ND | ND | | | 1,2-Dibromoethane | ND
2.16 | | 1.99 | | 1.84 | 1.29 | | | 2.05 | | ND | | 1.10 | | ND | ND 0.4 | | _ | 1,2-Dichlorobenzene | | | | | | | | 2.45 | | | NT | 1.67 | | | | 2.1 | | | 1,2-Dichloroethane | 2.59 | | 3.16 | 3.15 | 2.36 | | 5.76 | 5.34 | 4.48 | 3.6 | | 2.7 | 1.88 | | ND | ND | | | 1,2-Dichloropropane | 7.1 | 2.69 | | 7.89 | 5.03 | 3.93 | | 7.85 | 7.26 | 6.44 | 7.2 | 4.18 | 4.06 | • • • | | 4.6 | | | 1,4-Dichlorobenzene | 9.88 | | 10.33 | 8.3 | 9.1 | 8.58 | | 11.24 | 12.3 | | 15.2 | 13.4 | 9.32 | | ND | 15 | | | 2-Butanone | | ND | | | | | | | | | ND | | ND | ND | ND | ND | | L | 2-Hexanone | | ND | ND | | | | | | | | ND | .,, | | ND | ND | ND | | | 4-Methyl-2-Pentanone | | NT | | | | | | | | | ND | | | ND | ND | ND | | | Acetone | | ND | ND | | | | | | | | ND | 0.12 | 22.80 | | ND | ND | | | Acrylonitrile | | NT | NT | | | | | | | NT | ND | ND | ND | ND | ND | ND | | - | Benzene | | ND | 8.53 | 5.66 | 5.76 | 4.87 | 9.72 | 7.37 | 7.13 | 6.67 | 7.51 | 4.19 | | | | 4.3 | | | Bromochloromethane | | ND | ND | | | | | ND | | | NT | | ND | ND | ND | ND | | - | | | ND | | | | | | | | | ND | | | ND | ND | ND | | | Bromoform | ND | ND | | | | | | | | | ND | | | ND | ND | ND | | ∢ [| Bromomethane | ND | ND | | | ND | ND | | ND | | ND | ND | | | ND | ND | ND | | <u> </u> | Carbon disulfide | ND | ND | | | | | | | | | ND | | ND | ND | ND | ND | | <u> </u> | Carbon Tetrachloride | ND | ND | ND | | | | | | ND | | ND | ND | ND | ND | ND | ND | | <u> </u> | Chlorobenzene | 54.04 | 5.74 | 51.74 | 51.24 | 34.47 | 23.03 | 52.49 | 42.48 | 39.6 | 33.51 | 36.9 | 21.3 | 20.60 | 29 | ND | 24 | | 0 | Chloroethane | ND | ND | ND | | | | ND | ND | ND | | ND | 0.39 | 0.89 | ND | ND | ND | | (| Chloroform | ND | 7 | Chloromethane | NT ND | ND | ND | ND | ND | ND | 1.4 | ND | ND | | 1 | cis-1,2-Dichloroethene | 102.11 | 23.84 | 126.58 | 119.67 | 100.04 | 86.72 | 189.64 | 189.43 | 173.52 | 148.44 | 168 | 113 | 81.60 | 76 | ND | 100 | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | 15.83 | ND | 10.77 | 8.39 | 3.6 | 2.74 | 9.3 | 5.59 | 1.73 | 2.72 | 1.77 | 2.4 | 5.45 | 1.8 | ND | 5.9 | | Ī | Ethylbenzene | ND | ī | Methyl Iodide | ND NT | NT | | ND | ND | ND | ND | ND | ND | | Ī | Methyl Tertiary Butyl Ether | NT 4.33 | ND | 5.76 | 2.49 | ND | 2.00 | 3.8 | ND | ND | | | ortho-Xylene | ND | ND | ND | ND | ND | | | ND | | | ND | | | NT | | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | ND | ND | | | ND | | | ND | | | NT | | NT | | - | Styrene | ND | ND | | | ND | ND | ND | | ļ- | Tetrachloroethene | 53.93 | 28.72 | 42.58 | 47.07 | 37.1 | 23.91 | 51.32 | 54.18 | 53.26 | 44.75 | 33.8 | 26.3 | 10.70 | | ND | 27 | | ļ | Toluene | ND | ND | ND | ND | _ | | ND | ND | ND | | ND | ND | ND | ND | ND | ND - | | - | trans-1,2-Dichloroethene | 3.65 | | 4.65 | | | | | | | | | | | | ND | 3.1 | | | trans-1,3-Dichloropropene | | ND | | | | | | | | | | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | ND | | | | | | | | | ND | | | ND | | ND | | - | Trichloroethene | 51.64 | | 50.65 | 52.6 | 34.14 | 24.25 | | 50.9 | 45.34 | 39.05 | 42.4 | 26.1 | 21.60 | | ND
ND | 28 | | | Trichlorofluoromethane | 4.34 | | | 2.52 | 1.24 | | | | | 2.09 | | | | | ND | ND | | | | | NT | | | | | | | | | | 0.27 | | ND 2.9 | | ND
ND | | | , | | | | | | | | | | | NT 45.4 | | | | | | | - | Vinyl Chloride
Xylene (Total) | 10.51
NT | NT | 13.3
NT | 7.95
NT | 12.01
NT | 10.23
NT | | 13.71
NT | 12.75
NT | 13.43
NT | 15.4
NT | 10.2
NT | 31.60
NT | ND | ND
ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |------------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | NS | ND | | 1,1,1-Trichloroethane | NS | ND | | 1,1,2,2-Tetrachloroethane | NS | ND | | 1,1,2-Trichloroethane | NS | ND | | 1,1-Dichloroethane | NS | ND | 11.6 | 2.66 | 4.97 | 2.74 | 12.73 | 8.14 | 12.72 | 10.97 | 22.7 | 10.6 | 39.20 | 23 | ND | 21 | | | 1,1-Dichloroethene | NS | ND 0.54 | ND | ND | ND | | | 1,2,3-Trichloropropane | NS | ND | | 1,2-Dibromo-3-chloropropan | NS | ND | | 1,2-Dibromoethane | NS | ND | | 1,2-Dichlorobenzene | NS | ND | ND | ND | 11 | ND | ND | ND | ND | ND | NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | NS | ND | ND | ND | ND | ND | 1.59 | ND | 1.08 | ND | ND | 0.63 | 1.17 | ND | ND | ND | | | 1,2-Dichloropropane | NS | ND | 3.25 | 2.02 | 4.85 | 1.13 | 7.25 | 3.75 | 5.61 | 3.62 | 5.55 | 2.93 | 6.29 | 3.3 | ND | 5.8 | | | 1,4-Dichlorobenzene | NS | ND | 2.01 | ND | 11 | 1.5 | 3.77 | ND | 2.82 | ND | 4.18 | 2.83 | 4.51 | | ND | 5.4 | | | 2-Butanone | NS | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | NS | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NS | NT ND | ND | ND | ND | ND | ND | | | Acetone | NS | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | 0.59 | 0.70 | ND | ND | ND | | | Acrylonitrile | NS | NT ND | ND | ND | ND | ND | ND | | | Benzene | NS | ND | 1.58 | ND | 2.15 | ND | 3.54 | 1.89 | 2.66 | 1.82 | 2.63 | 1.89 | 3.46 | 2.2 | ND | 3.5 | | | Bromochloromethane | NS | ND | ND | ND | 1.29 | ND | ND | ND | ND | ND | NT | | ND | ND | ND | ND | | | Bromodichloromethane | NS | ND | | Bromoform | NS | ND | | | Bromomethane | NS | ND | 2 | Carbon disulfide | NS | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | B 1 | Carbon Tetrachloride | NS | ND | | ö | Chlorobenzene | NS | ND 1.21 | 0.92 | 1.46 | ND | ND | 2.1 | | 9 | Chloroethane | NS | 7.36 | 1.27 | 2.69 | 1.03 | ND | ND | ND | 2.5 | 2.61 | 1.39 | 0.87 | 1.64 | ND | ND | ND | | | Chloroform | NS | ND | | Chloromethane | NS | NT | NT | NT | NT | NT | NT | ND | ND | | ND | | ND | 2.1 | ND | ND | | | cis-1,2-Dichloroethene | NS | 5.03 | 11.79 | 7.57 | 18.1 | 22.6 | 25.91 | 25.54 | 26.92 | 26.86 | 21.4 | 12.4 | 26.20 | | ND | 23 | | | cis-1,3-Dichloropropene | NS | ND | | Dibromochloromethane | NS | ND | | Dibromomethane | NS | ND | | Dichloromethane | NS | ND | 7.22 | ND | 12.3 | 1.72 | 6.16 | 9.35 | 6.24 | 4.91 | 8.27 | 11.3 | 8.19 | 10 | ND | ND | | | Ethylbenzene | NS | ND | | Methyl Iodide | NS | ND | ND | ND | ND | ND | ND | NT | NT | | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NS | NT | NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | 0.85 | ND | ND | ND | | | ortho-Xylene | NS | ND NT | NT | NT | | | para-Xylene & meta-Xylene | NS | ND NT | NT | NT | | | Styrene | NS | ND | | Tetrachloroethene | NS | 4.85 | 12.43 | 5.03 | 21.98 | ND | 23.67 | 16.57 | 21.49 | 7.95 | 15.4 | 20 | 17.10 | 12 | 1.8 | 22 | | | Toluene | NS | ND | | trans-1,2-Dichloroethene | NS | ND | ND | ND | 1.38 | ND | 2.68 | 1.42 | 1.52 | 1.23 | 1.91 | 1.62 | 2.44 | 1.8 | ND | 2.5 | | | trans-1,3-Dichloropropene | NS | ND | | | | | | | | | ND | | | | ND | ND | | | trans-1,4-Dichloro-2-buten | NS | ND | | | | | | | | | ND | | | | ND | ND | | | Trichloroethene | NS | 10.18 | | | 17.23 | | 24.95 | | | | 18.1 | 11.6 | 20.30 | | ND | 17 | | | Trichlorofluoromethane | NS | ND | 2.57 | | 2.26 | | 3.46 | | | | 2.42 | 1.8 | | | ND | 2.2 | | | Vinyl Acetate | NS | NT | | | | | | | | | NT | 0.01 | | _ | ND | ND | | | Vinyl Chloride | NS | 1.01 | | ND | 6.32 | 1.54 | | | | 6.99 | | 7.32 | 6.22 | | ND | 6.4 | | | Xylene (Total) | NT | NT | | | | | | | | | | | | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | | | | 2007-F | | | | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |------------|-----------------------------|--------|--------|--------|------|-------|------|--------|------|------|------|--------|--------|--------|--------|----------|--------| | | 1,1,1,2-Tetrachloroethane | ND | ND | NS | | ND | | | ND | | ND | | 1,1,1-Trichloroethane | ND | ND | NS | ND | ND | ND | NS | ND | | 1,1,2,2-Tetrachloroethane | ND | ND | NS | | | | | | | ND | ND | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | ND | NS | ND | ND | | | ND |
 1,1-Dichloroethane | 3.21 | 1.48 | NS | 3.19 | 1.88 | 7.04 | NS | 4.2 | 4.03 | 4.04 | 4.62 | 1.08 | 12.00 | 2.3 | ND | 3.1 | | Ī | 1,1-Dichloroethene | ND | ND | NS | ND | ND | ND | NS | ND | ſ | 1,2,3-Trichloropropane | ND | ND | NS | ND | ND | | - | ND | Ī | 1,2-Dibromo-3-chloropropan | ND | 1.34 | NS | ND | ND | ND | NS | ND | | 1,2-Dibromoethane | ND | ND | NS | ND | ND | ND | NS | ND | | 1,2-Dichlorobenzene | ND | ND | NS | ND | 11 | ND | NS | ND | ND | ND | NT | ND | ND | ND | ND | ND | | Ī | 1,2-Dichloroethane | ND | ND | NS | ND | ND | ND | NS | ND | Ī | 1,2-Dichloropropane | ND | ND | NS | ND | ND | ND | NS | ND | Ī | 1,4-Dichlorobenzene | ND | 1.07 | NS | ND | 11 | ND | NS | ND | ND | ND | ND | 0.28 | ND | ND | ND | ND | | ı | 2-Butanone | ND | ND | NS | ND | 6.45 | ND | NS | NT | NT | NT | ND | ND | ND | ND | ND | ND | | 1 | 2-Hexanone | ND | ND | NS | ND | ND | ND | NS | NT | NT | NT | ND | ND | ND | ND | ND | ND | | 1 | 4-Methyl-2-Pentanone | NT | NT | NS | NT | NT | NT | NS | NT | NT | NT | ND | ND | ND | ND | ND | ND | | 1 | Acetone | ND | ND | NS | ND | ND | ND | NS | NT | NT | NT | ND | 0.61 | ND | ND | ND | ND | | 1 | Acrylonitrile | NT | NT | NS | NT | NT | NT | NS | NT | NT | NT | ND | | ND | ND | ND | ND | | 1 | Benzene | ND | ND | NS | ND | ND | ND | NS | ND | ı | Bromochloromethane | ND | ND | NS | ND | ND | ND | NS | ND | ND | ND | NT | ND | ND | ND | ND | ND | | 1 | Bromodichloromethane | ND | ND | NS | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | 1 | Bromoform | ND | ND | NS | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | | Bromomethane | ND | ND | NS | ND | ND | ND | NS | ND | 5 | Carbon disulfide | ND | ND | NS | ND | ND | ND | NS | NT | NT | NT | ND | ND | ND | ND | ND | ND | | B | Carbon Tetrachloride | ND | ND | NS | ND | ND | ND | NS | ND | ND | | ND | ND | ND | ND | ND | ND | | ö | Chlorobenzene | ND | ND | NS | ND | ND | ND | NS | ND | ND | ND | ND | | ND | ND | ND | 3.6 | | О 1 | Chloroethane | ND | ND | NS | ND | ND | | | ND | ND | ND | ND | 0.05 | 0.98 | ND | ND | ND | | 1 | Chloroform | ND | ND | NS | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | 1 | Chloromethane | NT | NT | NS | NT | NT | NT | NS | ND | ND | | ND | | ND | ND | ND | ND | | 1 | cis-1,2-Dichloroethene | ND | ND | NS | ND | ND | 1.28 | | 1.1 | 1.51 | 1.17 | 1.51 | 1.18 | 1.02 | ND | ND | ND | | 1 | cis-1,3-Dichloropropene | ND | ND | NS | ND | ND | | | ND | ND | ND | ND | | ND | | ND | ND | | | Dibromochloromethane | ND | ND | NS | ND | ND | ND | NS | ND | ND | | ND | | ND | ND | ND | ND | | 1 | Dibromomethane | ND | ND | NS | ND | ND | | | ND | 1 | Dichloromethane | ND | ND | NS | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | - 1 | Ethylbenzene | ND | ND | NS | | ND | | | ND | ND | | ND | | ND | | ND | ND | | - 1 | Methyl Iodide | ND | ND | NS | ND | ND | | | Nt | NT | | ND | | ND | ND | ND | ND | | - 1 | Methyl Tertiary Butyl Ether | NT | NT | NS | | NT | | | | | | ND | | ND | ND | ND | ND | | - 1 | ortho-Xylene | ND | ND | NS | | | | | | | | ND | | ND | NT | NT | NT | | ŀ | para-Xylene & meta-Xylene | ND | ND | NS | | | | | | | | ND | | ND | NT | NT | NT | | ľ | Styrene | ND | ND | NS | ND | ND | | | | | | ND | | ND | ND | ND | ND | | ľ | Tetrachloroethene | ND | ND | NS | | | | NS | ND | ND | ND | ND | 0.48 | 0.54 | | ND | 1. | | ľ | Toluene | ND | ND | NS | | | ND | NS | ND | ND | | ND | ND | ND | ND | ND | ND | | ľ | trans-1,2-Dichloroethene | | ND | NIO | | | | | | | NID. | ND | 0.39 | | ND | ND | ND | | ŀ | trans-1,3-Dichloropropene | | ND | | | | | | | | | ND | | | | ND | ND | | ŀ | trans-1,4-Dichloro-2-buten | | ND | | | | | | | | | ND | | | | ND | ND | | | Trichloroethene | 1.42 | | NS | 2.73 | | | | | | | ND | 2.31 | | | | 2.: | | | Trichlorofluoromethane | | ND | | | | | | | | | ND | | | ND | ND | ND | | ŀ | Vinyl Acetate | | NT | | | | | | | | | NT | 0.01 | | | ND | ND | | ŀ | Vinyl Chloride | 4.28 | | | 6.33 | 11.66 | 18.4 | | 6.29 | 9.17 | 2.78 | 3.92 | 3.55 | 10.20 | | ND | 1.9 | | | Xylene (Total) | | NT | | | | | | | | | | | NT | ND | ND
ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | cation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |--------------------------|----------------------------------|--------|--------|--------|----------|----------|--------|------------|----------|----------|--------|----------|--------|----------|--------|----------|--------| | | 1,1,1,2-Tetrachloroethane | ND | ľ | 1,1,1-Trichloroethane | ND | ľ | 1,1,2,2-Tetrachloroethane | ND | ľ | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND 1.13 | 0.63 | 1.11 | ND | ND | ND | | ľ | 1,1-Dichloroethene | ND | ľ | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND 143 | ND | ND | ND | | | 1,2-Dibromoethane | ND | ľ | 1,2-Dichlorobenzene | ND | NT | ND | ND | ND | ND | ND | | ľ | 1,2-Dichloroethane | ND | | ľ | 1,2-Dichloropropane | ND | ND | ND | ND | ND | | | ND | ND | | ND | 0.23 | ND | ND | ND | ND | | ľ | 1,4-Dichlorobenzene | ND | ND | ND | ND | ND | ND | 1.38 | | ND | ND | 3.16 | 0.71 | 3.80 | | ND | 1 | | ľ | 2-Butanone | ND | ND | | ND | ND | | | NT | NT | | ND | 0.45 | | | ND | ND | | ľ | 2-Hexanone | ND NT | NT | | ND | | ND | ND | ND | ND | | ľ | 4-Methyl-2-Pentanone | NT | ND | ND | ND | ND | ND | ND | | ľ | Acetone | ND | ND | ND | ND | ND | | | NT | NT | | ND | 0.82 | ND | ND | ND | ND | | ŀ | Acrylonitrile | NT | NT | NT | NT | | | | NT | NT | NT | ND | ND | ND | ND | ND | ND | | ŀ | Benzene | ND | ND | ND | ND | ND | | | ND | ND | | ND | ND | 2.11 | | ND | ND | | ŀ | Bromochloromethane | ND | ND | ND | ND | | | | ND | ND | | NT | | ND | ND | ND | ND | | ŀ | Bromodichloromethane | ND | ND | ND | ND | ND | ND | | ND | ND | | ND | | ND | ND | ND | ND | | ŀ | Bromoform | ND | ND | ND | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | | Bromomethane | ND | ND | ND | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | S F | Carbon disulfide | ND NT | NT | | ND | ND | ND | ND | ND | ND | | 2 | Carbon Tetrachloride | ND | ND | ND | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | $\widetilde{\mathbf{a}}$ | Chlorobenzene | ND | ND | ND | ND | | ND | 1.58 | | 1.07 | | 1.93 | 0.47 | 4.50 | | ND | ND | | 0 | Chloroethane | ND | ND | ND | ND | ND | | ND | ND | ND | | ND | 0.47 | 0.69 | | ND | ND | | ŀ | Chloroform | ND | ND | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ŀ | Chloromethane | NT | NT | | NT | NT | | | ND | ND | | ND | ND | ND | ND | ND | ND | | ŀ | cis-1,2-Dichloroethene | ND | ND | ND | ND | ND | 2.56 | | 4.38 | | | 7.5 | 4.52 | | | ND | IND | | ŀ | cis-1,3-Dichloropropene | ND | ND | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ŀ | Dibromochloromethane | ND | ND | ND | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | ŀ | Dibromomethane | ND | ND | ND | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | ŀ | Dichloromethane | ND | ND | ND | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | ŀ | Ethylbenzene | ND | | ŀ | Methyl Iodide | ND | ND | ND | ND | ND | | | NT | NT | | ND | | ND | ND | ND | ND | | ŀ | Methyl Tertiary Butyl Ether | NT | NT | NT | NT | | | | ND | ND | | ND
ND | | ND | ND | ND | ND | | ŀ | ortho-Xylene | ND | ND | ND | ND | | | | ND | ND | | ND | | ND | NT | NT | NT | | ŀ | para-Xylene & meta-Xylene | ND | ND | | ND | | | | ND | ND | | ND | | ND | NT | NT | NT | | ŀ | Styrene | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | | ŀ | Tetrachloroethene | ND | ND | ND | ND | ND | ND | 1.44 | | ND | | ND | ND | 0.86 | | ND | IND | | ŀ | | ND | ND | ND | ND
ND | ND
ND | | 1.44
ND | ND
ND | ND | | | | ND | ND | | | | ŀ | Toluene trans-1,2-Dichloroethene | | ND | | ND | | | | ND | | | ND
ND | | ND | ND | ND
ND | ND | | ŀ | | | | 1 | ND
ND | | | | | | | | | ND
ND | | | ND | | ŀ | trans-1,3-Dichloropropene | | ND | ND | | | | | | ND
NT | | | | | ND | ND | ND | | ļ | trans-1,4-Dichloro-2-buten | | ND | | ND | | | | | | | | | | ND | ND | ND | | ļ | Trichloroethene | ND | ND | | ND | ND | 1.04 | | | | ND | 1.66 | 0.81 | | | ND | ND | | ļ | Trichlorofluoromethane | | ND | | ND
NT | | | | | ND | | | | | ND | ND | ND | | | Vinyl Acetate | | NT | | | | | | NT | | | | | | ND | ND | ND | | | Vinyl Chloride | 3.33 | טאן | 1.21 | ND | 2.15 | ND | 5.29 | ND | 4.29 | ND | 2.61 | 0.38 | 4.04 | IND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | | | | 2007-F | 2008-S | 2008-F | | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |------------|-----------------------------|--------|--------|--------|------|----|-----|--------|--------|--------|----|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | | | ND | ND | ND | NS | ND | | 1,1,1-Trichloroethane | ND NS | ND | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | 2.82 | ND | ND | ND | ND | NS | ND | ND | . , _ | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | ND | ND | 1.8 | ND | | | ND | NS | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethane | ND NS | ND | | 1,1-Dichloroethene | ND | ND | ND | | | ND | ND | ND | NS | ND | | 1,2,3-Trichloropropane | ND | ND | ND | 3.69 | ND | ND | ND | ND | NS | ND | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | 5.52 | ND | ND | ND | ND | NS | ND | | 1,2-Dibromoethane | ND | ND | ND | 2.56 | ND | ND | ND | ND | NS | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | ND | ND | NS | ND | NT | . , | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND NS | ND | | 1,2-Dichloropropane | ND NS | ND | ND | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | ND | ND | NS | ND | ND | 0.27 | ND | ND | ND | ND | | | 2-Butanone | ND | ND | ND | NT | ND | ND | ND | NT | NS | NT | ND | ND | 0.56 | ND | ND | ND | | |
2-Hexanone | ND NT | NS | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT NS | NT | ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NS | NT | ND | 0.27 | ND | ND | ND | ND | | | Acrylonitrile | NT NS | NT | ND | ND | ND | ND | ND | ND | | | Benzene | ND | ND | ND | ND | ND | ND | 1.11 | ND | NS | ND | | Bromochloromethane | ND NS | ND | NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND NS | ND | | Bromoform | ND | ND | ND | 1.09 | ND | ND | ND | ND | NS | ND | 2 | Bromomethane | ND NS | ND | _ | Carbon disulfide | ND NT | NS | NT | ND | ND | ND | ND | ND | ND | | ST0 | Carbon Tetrachloride | ND NS | ND | <u> </u> | Chlorobenzene | ND NS | ND | (C) | Chloroethane | ND NS | ND | | Chloroform | ND NS | ND | | Chloromethane | NT ND | NS | ND | ND | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | ND NS | ND | ND | 0.78 | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND NS | ND | | Dibromochloromethane | ND | ND | ND | 1.04 | ND | ND | ND | ND | NS | ND | | Dibromomethane | ND | ND | ND | 2.33 | ND | ND | ND | ND | NS | ND | | Dichloromethane | ND NS | ND | | Ethylbenzene | ND | ND | ND | ND | ND | ND | 1.15 | ND | NS | ND | | Methyl Iodide | ND NT | NS | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT | NT | NT | NT | NT | NT | | ND | NS | ND | | ortho-Xylene | ND | ND | ND | ND | ND | ND | 1.45 | ND | NS | ND | ND | ND | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | ND | ND | ND | 3.64 | ND | NS | ND | ND | ND | ND | NT | NT | NT | | | Styrene | ND NS | ND | | Tetrachloroethene | ND NS | ND | | Toluene | ND | ND | ND | ND | ND | ND | 5.94 | ND | NS | ND | | trans-1,2-Dichloroethene | ND NS | ND | | trans-1,3-Dichloropropene | | ND | ND | 1.06 | | | | ND | | | ND | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND NT | NS | NT | ND | ND | ND | ND | ND | ND | | | Trichloroethene | 1.05 | | ND | ND | ND | 1.4 | ND | 1.1 | NS | | ND | 1.38 | ND | ND | ND | ND | | | Trichlorofluoromethane | | ND | ND | | | | | ND | | | ND | | ND | ND | ND | ND | | | Vinyl Acetate | | NT | | NT | | | ND | ND | ND | | | Vinyl Chloride | | ND | ND | ND | ND | | | ND | NS | | ND | | ND | ND | ND | ND | | | Xylene (Total) | | NT | NT | | | | | NT | NT | | NT | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND 0.22 | ND | ND | ND | ND | | | 2-Butanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | 0.21 | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | 0 | Bromomethane | ND | 7(| Carbon disulfide | ND NT | NT | NT | ND | ND | ND | 1.8 | ND | ND | | _ | Carbon Tetrachloride | ND | ST | Chlorobenzene | ND | ינט | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT ND | ND | ND | ND | ND | 0.87 | 4.9 | ND | ND | | | cis-1,2-Dichloroethene | ND | ND | 1.22 | ND | 2.52 | ND | 2.99 | 1.22 | ND | 1.15 | 1.54 | 0.57 | 1.26 | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Ethylbenzene | ND | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | ND | ND | ND | ND | 1.65 | ND | 1.56 | ND | ND | ND | ND | ND | 1.10 | ND | ND | ND | | | Toluene | ND | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | ND | | | | | | | | | | | | ND | | ND | | | trans-1,3-Dichloropropene | ND | ND | ND | | | ND | | | | ND | | trans-1,4-Dichloro-2-buten | ND | ND | ND | | | ND | | | NT | | ND | | | ND | ND | ND | | | Trichloroethene | ND | ND | ND | ND | 1.33 | | | | | | ND | 0.27 | | | ND | ND | | | Trichlorofluoromethane | ND | ND | ND | | | | | | | | ND | | | | ND | ND | | | Vinyl Acetate | NT | NT | NT | | | | | | NT | | NT | | | ND | ND | ND | | | Vinyl Chloride | ND | ND | ND | | | | | | ND | ND | ND | | | ND | ND | ND | | | Xylene (Total) | NT | | NT | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND 1.13 | ND | ND | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | 1.04 | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | ND | ND | ND | ND | NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND 1.34 | ND | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | ND | ND | ND | ND | 11 | ND | ND | ND | ND | ND | ND | 0.17 | ND | ND | ND | ND | | | 2-Butanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | 1.17 | ND | ND | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | ND | ND | ND | ND | | | Bromomethane | ND 0.23 | ND | ND | ND | ND | | 35 | Carbon disulfide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | Т6 | Carbon Tetrachloride | ND | S | Chlorobenzene | ND | • | Chloroethane | ND | | Chloroform | ND | | Chloromethane | NT ND | ND | ND | ND | ND | 0.81 | ND | ND | ND | | | cis-1,2-Dichloroethene | ND 9.43 | ND | ND | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | Dibromochloromethane | ND | | Dibromomethane | ND | | Dichloromethane | ND | | Ethylbenzene | ND | | Methyl Iodide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT ND | | ortho-Xylene | ND NT | NT | NT | | | para-Xylene & meta-Xylene | ND NT | NT | NT | | | Styrene | ND | | Tetrachloroethene | ND | | Toluene | ND | ND | ND | | | ND | ND | ND | ND | | ND | | ND | ND | ND | 1.0 | | | trans-1,2-Dichloroethene | ND | | trans-1,3-Dichloropropene | ND | ND | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND NT | NT | | ND | ND | ND | ND | ND | ND | | | Trichloroethene | ND | ND | ND | | ND | ND | ND | ND | ND | 7.13 | | | ND | ND | ND | ND | | | Trichlorofluoromethane | ND | ND | ND | | ND | | | | ND | | ND | | | ND | ND | ND | | | Vinyl Acetate | NT ND | ND | ND | ND | ND | | | Vinyl Chloride | ND | ND | ND | | | | | | ND | 1.29 | | | | ND | ND | ND | | | Xylene (Total) | NT | NT | NT | NT | | | | | | | | | NT | ND | ND | 3.6 | **TABLE 2: Volatile Organic Compounds - Historical Results** | | | | | 2. 10. | | | | - | | | | | | | | | | |----------|---|----------|----------|----------|----------|-----|----------|----------|------------|----------|------------|----------|------------|------------|----------|----------|----------| | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | | | 2007-F | | 2008-F | 2009-S | 2009-F | | 2010-F | 2011-S | 2011-F | 2012-S | | | 1,1,1,2-Tetrachloroethane | ND | ND | ND | ND | | ND | | 1,1,1-Trichloroethane | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | 1,1-Dichloroethene | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | – | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dibromoethane | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | ND | ND | ND | ND | | | ND | | ND | ND | NT | | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | 1,2-Dichloropropane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | 0.19 | | ND | ND | ND | | | 2-Butanone | ND | ND | ND | ND | | | | | NT | NT | ND | | ND | ND | ND | ND | | | 2-Hexanone | ND | ND | ND | ND | | | | | NT | NT | ND | | ND | ND | ND | ND | | |
4-Methyl-2-Pentanone | NT | NT | NT | NT | | | | | NT | NT | ND | | ND | ND | ND | ND | | | Acetone | ND | ND | ND | ND | | | | | NT | NT | ND | | ND | ND | ND | ND | | | Acrylonitrile | NT | NT | | NT | | | | | NT | NT | ND | | ND | ND | ND | ND | | | Benzene | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Bromochloromethane | ND | ND | ND | ND | | | ND | | ND | ND | NT | • | ND | ND | ND | ND | | | Bromodichloromethane | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Bromoform | ND | ND | ND | ND | | | | ND | ND | ND | ND | | ND | ND | ND | ND | | | Bromomethane | ND | ND | ND | ND | | ND | ND | | ND | ND | ND | 0.28 | | ND | ND | ND | | T70 | Carbon disulfide | ND | ND | ND | ND | | | | | NT | NT | ND | | ND | ND | ND | ND | | | Carbon Tetrachloride | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | S | Chlorobenzene | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | Chloroethane | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Chloroform | ND | ND | ND | ND | | | | | ND | ND | ND | | ND | ND | ND | ND | | | Chloromethane | NT | NT | | NT | | | NT | | ND | ND | ND | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | ND | ND
ND | ND
ND | ND
ND | | ND
ND | ND | 1.04 | | 1.17 | | | ND
ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | | | | | | | ND | ND | ND | ND | – | | ND | ND | ND | | | Dibromochloromethane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | Dibromomethane | ND | ND | ND | ND | | | ND | | ND | ND | ND | | ND | ND | ND | ND | | | Dichloromethane Ethylbonzono | ND
ND | ND
ND | ND
ND | ND
ND | | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | | ND
ND | ND
ND | ND | ND | | | Ethylbenzene
Mothyl Iodido | ND
ND | ND | ND
ND | ND
ND | | | ND
ND | | NT | | ND | | ND
ND | ND | ND | ND | | | Methyl Tortion, Butyl Ethor | | NT | | NT | | | NT | | | NT 7.27 | ND | | | | ND | ND | | | Methyl Tertiary Butyl Ether | NT
ND | ND | NT
ND | ND | | ND | ND | 3.82
ND | ND
ND | 7.27
ND | 1.19 | 4.27
ND | 1.04
ND | NT | ND
NT | ND
NT | | | ortho-Xylene
para-Xylene & meta-Xylene | ND | ND | ND
ND | ND
ND | | | | | ND | ND
ND | ND
ND | | ND
ND | NT | NT | NT | | | ' ' | ND | ND | ND | ND | | | | | ND | ND | | | ND
ND | ND | | | | | Styrene
Tetrachloroethene | ND | ND
ND | ND | ND
ND | | ND
ND | ND | ND
ND | ND | ND | ND | | ND
ND | ND | ND | ND | | | Toluene | ND | ND
ND | ND | ND
ND | | ND
ND | ND | | ND | ND | ND
ND | | ND
ND | ND | ND | ND
ND | | | trans-1,2-Dichloroethene | | ND | | | | | | | ND | | | | | | ND | | | | trans-1,3-Dichloropropene | ND | ND | | | | | | | ND | ND | | | ND | ND | | ND | | | trans-1,3-Dichloro-2-buten | ND | ND | | ND | | | | | NT | | ND | | ND | | ND | ND | | | Trichloroethene | ND | ND | | | | | | | ND | NT
ND | ND | | ND
ND | ND
ND | ND | ND | | | Trichlorofluoromethane | ND | ND | | | | | | | ND | ND | ND
ND | | ND | ND | ND
ND | ND
ND | | | Vinyl Acetate | NT | NT | | | | | | | NT | | NT | | ND | ND | | | | | Vinyl Chloride | ND | ND | | | | | | | ND | ND | | | ND | ND | ND
ND | ND | | | Xylene (Total) | | NT | | | | | | | NT | NT | ND
NT | | NT | ND | | ND | | | Ayıcıle (Tüldi) | INI | IIN I | IN I | INI | INI | INI | INI | INI | IIN I | INI | INI | INI | INI | טאו | ND | 2.2 | **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | ND | | 1,1,1-Trichloroethane | ND | | 1,1,2,2-Tetrachloroethane | ND | | 1,1,2-Trichloroethane | ND | | 1,1-Dichloroethane | ND | | 1,1-Dichloroethene | ND | | 1,2,3-Trichloropropane | ND | | 1,2-Dibromo-3-chloropropan | ND | | 1,2-Dibromoethane | ND | | 1,2-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | ND | ND | ND | ND | NT | ND | ND | ND | ND | ND | | | 1,2-Dichloroethane | ND | | 1,2-Dichloropropane | ND | | 1,4-Dichlorobenzene | ND | ND | ND | ND | 10 | ND | | 2-Butanone | NT | ND | ND | ND | ND | ND | ND | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 2-Hexanone | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | NT ND | ND | ND | ND | ND | ND | | | Acetone | ND NT | NT | NT | ND | 0.69 | 1.49 | ND | ND | ND | | | Acrylonitrile | NT ND | ND | ND | ND | ND | ND | | | Benzene | ND | | Bromochloromethane | ND NT | ND | ND | ND | ND | ND | | | Bromodichloromethane | ND | | Bromoform | ND | _ | Bromomethane | ND | 20 | Carbon disulfide | ND NT | NT | NT | ND | ND | ND | ND | ND | ND | | Т80 | Carbon Tetrachloride | ND | လ | Chlorobenzene | ND | | Chloroethane | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Chloroform | ND | | Chloromethane | NT | NT | NT | | | | NT | ND | ND | ND | ND | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dibromochloromethane | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dibromomethane | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Dichloromethane | ND | ND | ND | ND | ND | | | Ethylbenzene | ND | ND | ND | ND | | | ND | ND | ND | | ND | | ND | ND | ND | ND | | | Methyl Iodide | ND | ND | ND | ND | | | | NT | NT | NT | ND | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | NT | NT | NT | | | | NT | ND | ND | ND | ND | | ND | ND | ND | ND | | | ortho-Xylene | ND | ND | ND | ND | | ND | ND | ND | ND | | ND | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | ND | NT | NT | NT | | | Styrene | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | ND | | | Tetrachloroethene | ND | ND | ND | ND | ND | | | Toluene | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | . , _ | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | ND | | | | | | | | | | | | ND | | ND | | | trans-1,3-Dichloropropene | ND | ND | ND | | | | | ND | | | ND | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | ND | ND | ND | ND | | | | NT | NT | | ND | | | ND | ND | ND | | | Trichloroethene | ND | ND | ND | | | | | | ND | | ND | | | ND | ND | ND | | | Trichlorofluoromethane | ND | ND | ND | | | | | | | | ND | | | ND | ND | ND | | | Vinyl Acetate | NT | NT | NT | | | | | | NT | | NT | | | ND | ND | ND | | | Vinyl Chloride | ND | ND | ND | | | | | | ND | | ND | | | ND | ND | ND | | | Xylene (Total) | NT ND | ND | 1. | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|------------------------------|--------------|-------------------|---------|------------------|-----------|----------|--------|----------|--------|--|--------|--|--------|--------|----------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | NT | ND | ND | ND | | ľ | 2-Butanone | | | | | | | | | | | | | NT | ND | ND | ND | | Ī | 2-Hexanone | | 1 | | | | | | - | | | | | NT | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | 4.14 | | | | | NT | ND | ND | ND | | Ī | Acetone | | | | | | | . 64 | 781 | 1 | | | | NT | ND | ND | ND | | l l | Acrylonitrile | | | | | | | | | | . 6 | | | NT | ND | ND | ND | | - | Benzene | | 1 | | | | 4.1 | Trans | 14 | | 411 | | | NT | ND | ND | ND | | - | Bromochloromethane | | | | | | | 46 | | -07/11 | 4 | | | NT | ND | ND | ND | | | Bromodichloromethane | | | | | 4 | | 1 | 1/2/ | | ' | | | NT | ND | ND | ND | | | Bromoform | | | | . 1 | 114 | 113. | | 2011 | | | | | NT | ND | ND | ND | | | Bromomethane | | 1 | | 1/11 | HH^{-1} | <u> </u> | | J- 67-7 | - | | | | NT | ND | ND | ND | | ш | Carbon disulfide | + | 1 | | 1077 | 14.2 | The . | 40 | 1 | | | | | NT | ND | ND | ND | | 7 | Carbon Tetrachloride | | | 2.54 | $\mu \Psi^{*}$ | , | - 6 | 1/1/2 | | | | | | NT | ND | ND | ND | | S | Chlorobenzene | + | | 411-1 | 11 | -0- | 2-V | | - | | † | 1 | | NT | ND | ND | ND | | ≥ ŀ | Chloroethane | | 14/15 | 111 | | 1/10 1 | 1 | | | | | | | NT | ND | ND | ND | | <u> </u> | Chloroform | | +///-2 | - | - | 407 | | | | | | | | NT | ND | ND | ND | | - | Chloromethane | | 44 | | 67 70 | 1 | | | | | | | | NT | ND | ND | ND | | | cis-1,2-Dichloroethene | | | 11/2/18 | H2) | | | | | | <u> </u> | | | NT | ND | ND | ND | | | cis-1,3-Dichloropropene | | _ 1 | | 113 — | | | | | | | | | NT
 ND | ND | ND | | | Dibromochloromethane | | - Wh | 10 4 . | | | | | | | | | | NT | ND | ND | ND | | | Dibromomethane | - | 187111 | 1.12 | 1 | | | | | | | | 1 | NT | ND | ND | ND | | - | Dichloromethane | + |) | | | | | | | | | | | NT | ND | ND | ND | | L | Ethylbenzene | ` | _ | | 1 | | | | | | | | | NT | ND | ND
ND | ND | | | Methyl Iodide | | 1 | | 1 | | | | | | | | | | ND | | _ | | | | | 1 | | | | | | | | | | | NT | | ND | ND | | | Methyl Tertiary Butyl Ether | 1 | | | | | | | | | | | | NT | ND | ND | ND | | ľ | ortho-Xylene | + | + | | 1 | | | | <u> </u> | | | | 1 | NT | NT | NT | NT | | | para-Xylene & meta-Xylene | + | + | } | 1 | - | | - | <u> </u> | - | | - | | NT | NT | NT | NT | | ŀ | Styrene | + | | | . | ļ | | | <u> </u> | ļ | | | | NT | ND | ND | ND | | Į. | Tetrachloroethene | _ | | | | | | | | | ļ | | | NT | ND | ND | ND | | ļ. | Toluene | _ | | | | | | | | | <u> </u> | | | NT | ND | ND | ND | | | trans-1,2-Dichloroethene | 1 | | | | | | | | | | | 1 | NT | ND | | ND | | | trans-1,3-Dichloropropene | 1 | | | | | | | | | <u> </u> | | | NT | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | 1 | | | | | | | | | ļ | | | NT | ND | ND | ND | | | Trichloroethene | 1 | | | | | | | | | | | | NT | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | NT | ND | ND | ND | | | Vinyl Acetate Vinyl Chloride | | | | | | | | | | | | | NT | ND | ND | ND | | | | | | | | | | 1 | | | | | | NT | ND | ND | ND | SPRING 2012 Report Note: MCL exceedances are indicated in Red Page 26 of 41 **TABLE 2: Volatile Organic Compounds - Historical Results** | 1 | Danasatas | 10004 F | 10005.0 | 1000F F | 0000 | 10000 E | 0007.0 | I0007 F | 0000 | 10000 F | 10000 0 | 10000 F | 10040.0 | 0040 5 | 10044-0 | 10044 F | 10040.0 | |----------|-----------------------------|---------|--|--------------|--|---------|--|---------|--------|---------|--|----------|--|----------|---------|-----------|----------| | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | NT | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | NT | ND | ND | ND | | | 2-Hexanone | | | | | | | , 16a | | | | Ī | | NT | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | 181 | . 14 | | | | | NT | ND | ND | ND | | | Acetone | | | | | | 1 | | | | | | | NT | ND | ND | ND | | | Acrylonitrile | | | | | _ | 1 PL | 111 | | 7.11 | | | | NT | ND | ND | ND | | | Benzene | | | | | | 740 | - | 0/1/ | 442 | | | | NT | ND | ND | ND | | | Bromochloromethane | | | | 4.0 | 201 | 12 | 14 | 1 | 7 | | | | NT | ND | ND | ND | | | Bromodichloromethane | | | | 1.18 | 444 | - | 401 | | | | | | NT | ND | ND | ND | | | Bromoform | | | | a_{LL} | | 4 0 | 12.07 | - | | | | | NT | ND | ND | ND | | ا را | Bromomethane | | | 10 m | <i>M</i> + | 16. | 10.2 | 1 | | | | | | NT | ND | ND | ND | | | Carbon disulfide | | - 11/11 | | ** | 1 0 | $-\mu$ | | | | | | | NT | ND | ND | ND | | | Carbon Tetrachloride | _ 4 1 | 2//// | 111 | 4 | 42 | <u> </u> | | | | | | | NT | ND | ND | ND | | MW2, | Chlorobenzene | | 15-44 | | 4.6 | HA- | _ | | | | | | | NT | ND | ND | ND | | ≥ | Chloroethane | // | 1 | | 24 | - | | | | | | | | NT | ND | ND | ND | | | Chloroform | - | T a | - (4) | 3, , , | | | | | | | | | NT | ND | ND | ND | | | Chloromethane | | 11 | 15/11 | _ | | | | | | | | | NT | ND | ND | ND | | | cis-1,2-Dichloroethene | | 1/10/ | Hara | | | | | | | | | | NT | ND | ND | ND | | | cis-1,3-Dichloropropene | 00 | WW | - | | | | | | | | | | NT | ND | ND | ND | | | Dibromochloromethane | 120 | Ma a | | | | | | | | | | | NT | ND | ND | ND | | | Dibromomethane | 100 | , | | | | | | | | | | | NT | ND | ND | ND | | | Dichloromethane | | | | | | | | | | | | | NT | ND | ND | ND | | | Ethylbenzene | | + | | | | | - | | - | 1 | - | 1 | NT | ND | ND | ND | | | Methyl lodide | - | - | - | | | | - | | | } | | | NT | ND | ND | ND
ND | | | Methyl Tertiary Butyl Ether | + | + | 1 | | | | 1 | | - | 1 | <u> </u> | 1 | NT
NT | ND | | ND
ND | | | | | | | | | | | | | | | - | | | ND | | | | ortho-Xylene | | | | | | | | | | | | - | NT | NT | NT | NT | | | para-Xylene & meta-Xylene | | - | | | | | | | | | | - | NT | NT | NT | NT | | | Styrene | | | ļ | - | | - | ļ | | ļ | | <u> </u> | | NT | ND | ND
0.5 | ND | | | Tetrachloroethene | - | | | | | | ļ | | | | ļ | | NT | AND 4 | 2.5 | | | | Toluene | + | | ļ | | | | ļ | | ļ | } | ļ | | NT | ND | ND | ND | | | trans-1,2-Dichloroethene | + | ├ | ļ | | | | ļ | | - | ├ | <u> </u> | | NT | ND | ND | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | NT | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | ļ | | | 1 | | | NT | ND | ND | ND | | | Trichloroethene | | | | | | | | | | 1 | | 1 | NT | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | NT | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | ļ | | ļ | NT | ND | ND | ND | | | Vinyl Chloride | 1 | 1 | | | | | | | | . | | . | NT | ND | ND | ND | | | Xylene (Total) | | | | | | | | | | | | | NT | ND | ND | ND | SPRING 2012 Report Page 27 of 41 **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|--|--|--------|-----------|--------|--|----------|--------|--|----------|--------|--------|--------|--------|----------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1,2-Trichloroethane | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2,3-Trichloropropane | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dibromoethane | | 1 | 1 | 1 | | 1 | 1 | - | 1 | † | - | 1 | NT | ND | ND | ND | | | 1,2-Dichlorobenzene | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | NT | ND | ND | ND | | | 1,2-Dichloropropane | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 1,4-Dichlorobenzene | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 2-Butanone | | 1 | | | | | | | | | | | NT | ND | ND | ND | | | 2-Hexanone | | | | | | | | 4. | | <u> </u> | | | NT | ND | ND | ND | | | 4-Methyl-2-Pentanone | | + | | 1 | | 1 | | | 1 | | | 1 | NT | ND | ND | ND | | | Acetone | + | + | | | | | | | - | | | | | ND | | | | | Acrylonitrile | | - | } | - | - | ₫. | | 43. | | -///- | | - | NT | ND | ND | ND
ND | | | , | | <u> </u> | 1 | ļ | | | 1.67 | 7 | (A) | | | | NT | | ND | | | | Benzene | _ | <u> </u> | ļ | ļ | | 9/// | 12 | 4.1 | L. L. | - | | ļ | NT | ND | ND | ND | | | Bromochloromethane | | | | | -de-FR | 16/75 | * | | | 1 | | | NT | ND | ND | ND | | | Bromodichloromethane | | | | 0.14 | | 14- | | C-2/1/ | 1 | | | | NT | ND | ND | ND | | | Bromoform | | <u> </u> | _ | 0-/// | 1/11 | | 2-10- | 100 | | | | | NT | ND | ND | ND | | m | Bromomethane | | | | LOTI | 7.0 | 1 | 1/11/ | - | | | | | NT | ND | ND | ND | | 7 | Carbon disulfide | | | | 11/2 | - | 10 | 11/1 - | | | | | | NT | ND | ND | ND | | ≥ | Carbon Tetrachloride | | | 7 / / / | 4. | - 1le | 130 | | | | | | | NT | ND | ND | ND | | MW2B | Chlorobenzene | | ME | 11.0 | | r_{JJJ} | | | | | | | | NT | ND | ND | ND | | | Chloroethane | | 113. | | | 1 24. | | | | | | | | NT | ND | ND | ND | | | Chloroform | | , | 14-10 | 101 | , - | | | | | | | | NT | ND | ND | ND | | | Chloromethane | | | 11/11/1 | 737 | | | | | | | | | NT | ND | ND | ND | | | cis-1,2-Dichloroethene | | 1 | BIJJ | | | | | | | | | | NT | ND | ND | ND | | | cis-1,3-Dichloropropene | | الالحا | 16. | | | | | | | | | | NT | ND | ND | ND | | | Dibromochloromethane | | 1014 | 1 | | | | | | | | | | NT | ND | ND | ND | | | Dibromomethane | | 7 | | | | | | | | | | | NT | ND | ND | ND | | | Dichloromethane
| | | | | | | | | | | | | NT | ND | ND | ND | | | Ethylbenzene | | | | | | | | | | | | | NT | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | NT | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | NT | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | NT | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | NT | NT | NT | NT | | | Styrene | | | | | | | | Ì | | Ì | ĺ | | NT | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | NT | 1.9 | 3 | 3 | | | Toluene | | | | | | | | | | | | | NT | ND | ND | ND | | | trans-1,2-Dichloroethene | 1 | 1 | 1 | 1 | i | 1 | | i | 1 | 1 | i | 1 | NT | ND | | ND | | | trans-1,3-Dichloropropene | 1 | 1 | 1 | 1 | i | 1 | | i | 1 | 1 | i | 1 | NT | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | 1 | | | NT | ND | ND | ND | | | Trichloroethene | | | | | | | | | İ | <u>† </u> | l | | NT | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | NT | ND | ND | ND | | | Vinyl Acetate | + | 1 | | | | | | | | 1 | | | NT | ND | ND | ND | | | Vinyl Chloride | + | | | | | | | | | 1 | | | NT | ND | ND | ND | | | Xylene (Total) | + | 1 | | 1 | | 1 | 1 | - | | - | - | | NT | ND | | ND | SPRING 2012 Report Note: MCL exceedances are indicated in Red Page 28 of 41 **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|------------|--|-------------|-----------|--------|----------|----------|---------|--|--------|--------|----------|--------|----------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | + | + | | | | | | 4. | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | 1 | | | | | | | 1 | 1 | | | | ND | ND | ND | ND | | | Acetone | + | + | } | 1 | - | - | 4 | | 1 | | - | 1 | ND | ND | ND | ND | | | Acrylonitrile | + | 1 | | | | 4 | | <u> </u> | | 1111 | | - | ND | ND | ND | ND | | | Benzene | | + | 1 | - | - | - N | HET | 7 | Hoz (h) | 41-21- | - | - | ND
ND | ND | ND
ND | ND | | | Bromochloromethane | | | | | | 0-1-1 | 17- | 14. | 111 | | | | ND | ND | | | | | | | 1 | ļ | | Total Par | 11/11. | * * | | | Ι | | | | | ND | ND | | | Bromodichloromethane | | | | - | | 14- | <u> </u> | 2-2/-/ | - | | | | ND | ND | ND | ND | | | Bromoform | | | | -0-/// | 11 11 . | | 19-10a | 1 00 | | | | | ND | ND | ND | ND | | S | Bromomethane | | | - 1 | $t_{t,t,t}$ | 7.2 | 1 | 1111 | - | | | | | ND | ND | ND | ND | | 3 | Carbon disulfide | | | $-\mu_{\rm ch}$ | 112. | | -0-11 | 18.0 | | | | | | ND | ND | ND | ND | | MW3, | Carbon Tetrachloride | | - 2 | 777 | 14. | 160 | 15 | * | | | | | | ND | ND | ND | ND | | 5 | Chlorobenzene | | 11/1/12 | 11.0 | - | 17-37-1 | - | | | | | | | ND | ND | ND | ND | | | Chloroethane | | 1/1 - | | | 1 24. | | | | | | | | ND | ND | ND | ND | | | Chloroform | | - | 10-0 | 18/ 4 | , , | | | | | | | | 1.46 | | | | | | Chloromethane | | | 11/11 | 17:37 | | | | | | | | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | , | UIII | | | | | | | | | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | | الالاحا | 16. | | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | 10145 | 7 78 | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | • | J • | | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | 1 | 1 | 1 | | i | 1 | | | 1 | 1 | 1 | | ND | ND | ND | ND | | | Trichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Chloride | + | 1 | | | | | | | | | | | ND | ND | ND | ND | | | Xylene (Total) | + | + | | 1 | | | 1 | 1 | - | | - | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|--|--------|--|--|----------|--------------|--|--------|--|--------|----------|--------|--|----------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1.1.2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1.1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | 1 | 1 | - | 1 | 1 | - | 1 | 1 | - | 1 | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | 1 | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | 1 | | | | | - | | 1 | | 1 | ND | ND | ND | | | | | | | | | | | | | | | | | ND | ND | | ND | | | 2-Hexanone | 1 | - | | | | | | 4. | 1 | | | - | ND
ND | | ND | ND | | | 4-Methyl-2-Pentanone | 4 | | | } | ļ | - | - | 14 | - | } | ļ | <u> </u> | | ND | ND | ND | | | Acetone | | | | | | | 4 | | 1 | | | | ND | ND | ND | ND | | | Acrylonitrile | | | | | | | | 113. | | 111- | | | ND | ND | ND | ND | | | Benzene | | | | | | | | 1.0 | -0-D | | | | ND | ND | ND | ND | | | Bromochloromethane | | | | | | 01/1 | 12 | 10-10 | 1 | 1 1/2 | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | 11/11. | | | | T | | | ND | ND | ND | ND | | | Bromoform | | | | -10 | 175 | 14. | | 5.277 | 4 | | | | ND | ND | ND | ND | | В | Bromomethane | | | | | 11 11 . | | 24.40 | 1 24. | | | | | ND | ND | ND | ND | | 33 | Carbon disulfide | | | | TOTI | 7.0 | 1 | 77.777 | - 10 | | | | | ND | ND | ND | ND | | > | Carbon Tetrachloride | | | 1/2 | 112. | | اللحا | 11.0 | | | | | | ND | ND | ND | ND | | MW3I | Chlorobenzene | | 1 | | 100 | nla. | 16 | | | | | | | ND | ND | ND | ND | | 2 | Chloroethane | | | 11. | | 1811 | | | | | | | | ND | ND | ND | ND | | | Chloroform | | 1/1/2 | | | 1100. | | | | | | | | ND | ND | ND | ND | | | Chloromethane | | | \$4.40 | 10/1 | , | | | | | | | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | | 1111 | 1/3/ | | | | | | | | | 1.11 | ND | ND | ND | | | cis-1,3-Dichloropropene | | | 1211 | | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | 1111 | 1/2 | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | 4.07.12 | - | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | 1 | 7 | | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | 1 | 1 | | | | | | | | | | † | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | - | ND | ND | ND | ND | | | Toluene | 1 | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | + | + | 1 | 1 | | 1 | 1 | - | - | 1 | - | 1 | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | + | + | | 1 | 1 | | | | | 1 | | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | + | + |
 | 1 | - | | | | | 1 | | | ND | ND | | | | | | 1 | | <u> </u> | | | | | | | | | | | | ND | ND | | | Trichloroethene Trichloroftuoromethene | + | - | | 1 | - | | - | <u> </u> | | 1 | | - | ND | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | | ND | ND | ND | | | Vinyl Chloride | | | | | | | | | | | | | ND | ND | ND | ND | | | Xylene (Total) | 1 | 1 | I | 1 | I | I | Ī | I | I | 1 | I | 1 | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|------------|---------|--|--------|----------|--|--------|--|------------|--|--|--------|----------|--------|----------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND 5.0 | ND | ND | | | 1,2,3-Trichloropropane | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | 1 | | | | | | | | 1 | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | - | 1 | | | | - | | | | | | - | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | + | 1 | | | | - | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | | | | | | _ | <u> </u> | | | | | | 44. | | <u> </u> | | | ND | ND | ND | ND | | | 2-Hexanone | _ | - | | | | - | - | | 1 | 1 | - | ļ | | | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | -4 | | 1 | | | | ND | ND | ND | ND | | | Acetone | | | | | | - 4 | | 115. | | 111-1 | | | ND | | ND | ND | | | Acrylonitrile | | | | | | | 1107 | 4 | - A | 14/20 | | | ND | ND | ND | ND | | | Benzene | | | | | | 911 | 72 | | 11/1 | <u>,,,</u> | | | ND | 1.1 | | ND | | | Bromochloromethane | | | | | -44 | 1677 | | | | | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | 14- | | 2.2/7 | 1 | | | | ND | ND | ND | ND | | | Bromoform | | | | -07/// | 1/11 | | 4.10 | 1 00 | | | | | ND | ND | ND | ND | | \sim | Bromomethane | | | 1 | TOTI | 1. | 1 | 77.77 | | | | | | ND | ND | ND | ND | | Ò | Carbon disulfide | | | II | 112 | 4 | اللحا | 18.0 | | | | | | ND | ND | ND | ND | | MW0 | Carbon Tetrachloride | | | 777 | 14. | 10 | 450 | 1 | | | | | | ND | ND | ND | ND | | 5 | Chlorobenzene | | ME | 11.0 | | TSTI | | | | | | | | ND | | ND | ND | | | Chloroethane | | 1/3 2 | | | 1 24. | | | | | | | | ND | ND | ND | ND | | | Chloroform | | - | 14.0 | 10 | , | | | | | | | | ND | ND | ND | ND | | | Chloromethane | | | 11.6.14 | [3] | | | | | | | | | ND | 2.9 | ND | ND | | | cis-1,2-Dichloroethene | | | M11 | | | | | | | | | | ND | 13 | ND | ND | | | cis-1,3-Dichloropropene | | | 16. | | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | IGI_{As} | - | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | 7 | | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | | | | | | | | | | | | ND | ND | 2 | ND | | | Ethylbenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | 1 | | | | | | | | | 1 | | | ND | ND | ND | ND | | | Tetrachloroethene | 1 | 1 | | | | | | | | 1 | | İ | ND | ND | | ND | | | Toluene | 1 | 1 | | | | | | | | 1 | | İ | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | ND | | | ND | | | trans-1,3-Dichloropropene | 1 | | | | | | | | | | | | ND | | | ND | | | trans-1,4-Dichloro-2-buten | + | 1 | 1 | | | - | | | | 1 | | | ND | | | ND | | | Trichloroethene | 1 | | | | | | | | | 1 | | | ND | 5.6 | | ND | | | Trichlorofluoromethane | + | + | | | | | | | | | | | ND | ND | | ND | | | Vinyl Acetate | + | | | - | | - | - | | - | | - | - | ND | ND | | ND | | | | + | | | | | | | | | | | | ND | | | | | | Vinyl Chloride | | | | | | | | l | | <u> </u> | | | NT | ND
ND | | ND
ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|--------------------------------------|--------------|--|----------------------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------------|----------|--------|-----------| | Location | 1,1,1,2-Tetrachloroethane | 2004-F | 2005-5 | 2005-F | 2006-3 | 2006-F | 2007-5 | 2007-F | 2006-5 | 2006-F | 2009-5 | 2009-F | | 2010-F
ND | ND | | | | | | | | | | | | | | | | | | ND
ND | ND | ND | ND | | | 1,1,1-Trichloroethane | + | 1 | | ļ | | | | | | | | | ND
ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | + | | | 1 | | | | | | | | | | | ND | ND | | | 1,1,2-Trichloroethane | + | | | | | | | | | | | | ND
6.86 | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | | | ND | 3.3 | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | 1.84 | | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | 2.37 | | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | 6.64 | | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | 1 | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acetone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acrylonitrile | | | | | | | | . 14 | | | | | ND | ND | ND | ND | | | Benzene | | | | | | | - 41 | 151 | | | | | 0.74 | ND | ND | 6.3 | | | Bromochloromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | . 14 | 12. V | 1 | | | | | ND | ND | ND | ND | | | Bromoform | | | | | | 11/11 | (0) | | 0/1/ | 160 | | | ND | ND | ND | ND | | 10 | Bromomethane | | | | | | *LL1 | 1 | 1/1/ | | | | | ND | ND | ND | ND | | MW06 | Carbon disulfide | | | | | 11157 | 1/2.2 | | 10/11 | | | | | ND | ND | ND | ND | | > | Carbon Tetrachloride | | | | 1/10 | L/L | | | 2014 | | | | | ND | ND | ND | ND | | | Chlorobenzene | | | | 107/ | 1 | the . | 703 | 1 | | | | | 5.77 | 7.1 | 6.1 | ND | | 2 | Chloroethane | | | 11 | μ_{μ} | | | 444 | | | | | | ND | ND | ND | ND | | | Chloroform | | | U = U | 11 | | 10217 | 76 | | | | | | ND | ND | ND | ND | | | Chloromethane | | 115 | M . | | 1 0 W | 1 | | | | | | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | +/// | - | 63 | 4-17-4 | | | | | | | | 33.20 | | ND | 23 | | | cis-1,3-Dichloropropene | | 1/2 | | also di | 1000 | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | 4 2 10 | 4.67 | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | | - | 1 | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | - 4/67 | 11-1-2- | | | | | | | | | | 0.56 | | ND | ND | | | Ethylbenzene | <u> </u> | 42/11 | 1 | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | 1 | 700 | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | - | | | | | | | | | 5.16 | | ND | | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | 3.3
NT | | | | | | | | | | | | | | | | ND
ND | | | | | | para-Xylene & meta-Xylene
Styrene | | | | | | | | | | | | | ND
ND | NT
ND | NT | NT
ND | | | · · | + | - | | | | | | | | | | | | | ND | | | | Tetrachloroethene | | | ļ | | | | | | ļ | - | | | ND | ND | ND | ND | | | Toluene | 1 | | | | | | | | ļ | | | | ND | ND | ND | ND 4.0 | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | 2.63 | ND | 2.2 | | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | | ND | ND | ND | | | Trichloroethene | | | | | | | | | | | | | 1.19 | | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | ND | ND | | ND | | | Vinyl Acetate | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Chloride | | | | | | | | | | | | | ND | ND | ND | 2 | | | Xylene (Total) | | | | | | | | | | | | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--|--|--------|--|------------|--------|--
--|--|--------|--------|----------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | + | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | 0.73 | | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | 44 | | | | | ND | ND | ND | ND | | | Acetone | | | - | | - | | . 1 | | 1 | | - | | 4.74 | | ND | ND | | | Acrylonitrile | + | + | - | | - | | 1 | H-24-12 | | | | | ND | ND | ND | ND | | | Benzene | | | | | | the state | 8 | 13. | | HH- | | | ND | ND | | | | | Bromochloromethane | | | | | | -4/1 | HA)—, | | - GT RA | 1/20 | | | ND | ND | ND | ND | | | | | 1 | | ļ | , | <i>911</i> | 7 | 14 | L'IL | 1/4 | | | | | ND | ND | | | Bromodichloromethane | - | | | | A CO | 11/11. | | | | 1 | | | ND
ND | ND | ND | ND | | | Bromoform | | | | 100 | 1-11-1 | 14. | | 2-11/7/ | * | | | | | ND | ND | ND | | / | Bromomethane | | | | 10-111 | 11 11 | 4 | 4.10 | 10 | | | | | ND | ND | ND | ND | | 0 | Carbon disulfide | | | | tar | 7 | _/ | 1/11/ | - | | | | | 2.00 | ND | ND | ND | | MW07 | Carbon Tetrachloride | | - | | 112 | 1 | اللحا | 11/11 | | | | | | ND | ND | ND | ND | | 5 | Chlorobenzene | | LIE. | 1111 | | | 120 | | | | | | | ND | ND | ND | ND | | _ | Chloroethane | | 11/1/2 | 100 | - | 1/2/7 | - | | | | | | | ND | ND | ND | ND | | | Chloroform | | 113. | | | 1 24 | | | | | | | | ND | ND | ND | ND | | | Chloromethane | | | - A (B) | 10 | , | | | | | | | | 0.58 | ND | ND | ND | | | cis-1,2-Dichloroethene | | | 7777 | 737 | | | | | | | | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | | | 4111 | | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | 07111 | K. | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | 101. | - | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | 7 | | | | | | | | | | | ND | ND | | ND | | | Ethylbenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | 0.54 | ND | 3 | 3 | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | | ND | ND | ND | | | Trichloroethene | 1 | 1 | | | | | | | | 1 | | | 0.52 | | 3 | | | | Trichlorofluoromethane | | | | | | | | | | | | | | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | | ND | ND | ND | | | Vinyl Chloride | 1 | | | | | | | | | 1 | | | | ND | ND | ND | | | Xylene (Total) | | | | | | | | | | | | | | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|------------|--------|--------|----------|--------|--|--|--|--|--------|--------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | + | + | | 1 | | | | | - | 1 | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acetone | | + | | | | | - | 100 | | | | | 1.41 | | ND | ND | | | Acrylonitrile | | | | | | | | - | 1 | | | | ND | ND | ND | ND | | | Benzene | | | | | | | -4 | | | | | 1 | ND | ND | | | | | Bromochloromethane | | | | | | 4. | | 112 | | 1111 | | | ND | ND | ND | ND | | | | _ | 1 | | | | -41 | HB)— | 4 - | - Ox A) | 1./1.2 | | | | | ND | ND | | | Bromodichloromethane | | | | | | D-1-11 | 1 | | | - | | | ND | ND | ND | ND | | | Bromoform | | | | | Late P | 11/11. | 1 | | | | | | ND | ND | ND | ND | | MW08 | Bromomethane | | | | 100 | الماليا | 14. | | 2-2/7 | 1 | | | | ND | ND | ND | ND | | 9 | Carbon disulfide | | | | 10-7/1 | 11 11 | | 4-10- | 10 | | | | | ND | | ND | ND | | 3 | Carbon Tetrachloride | | | 11 | tat | 7 . | _1 | 1/1/1 | - | | | | | ND | ND | ND | ND | | > | Chlorobenzene | | 1 | | 112 | - | -211 | 18. | | | | | | 0.51 | | ND | ND | | _ | Chloroethane | | L. B | 777 | 10. | -16 | 120 | | | | | | | ND | ND | ND | ND | | | Chloroform | | ME | 13.0 | - | 1/2/7 | - | | | | | | | ND | ND | ND | ND | | | Chloromethane | | 113. | | | 1 24 | | | | | | | | 1.98 | | ND | ND | | | cis-1,2-Dichloroethene | | | | 10 | | | | | | | | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | | | | 737 | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | 411. | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | | 14 | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | 1014 | | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | y • | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | ND | ND | | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | 1 | 1 | | | i | 1 | 1 | | 1 | | i | 1 | ND | ND | ND | ND | | | Trichloroethene | 1 | | | | | | | | | | | | ND | ND | | ND | | | Trichlorofluoromethane | 1 | 1 | | | <u> </u> | İ | İ | | İ | l | l | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | | ND | ND | ND | | | Vinyl Chloride | | 1 | | | | | | | | | | 1 | ND | ND | ND | ND | | | Xylene (Total) | + | + | 1 | 1 | - | 1 | | | | | - | | NT | ND | ND | ND | SPRING 2012 Report Page 34 of 41 **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|---------------|--------------|--------------|--|---------|---|---------------------------------------|---|----------|----------------|--------|--------------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | |
 | | | | | | ND | ND | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | 1 | | | | | 1 | † . | | | | | ND | ND | ND | ND | | | Acetone | | | | | | | | - 14 | | | | | ND | | ND | ND | | | Acrylonitrile | | | | | | | | 1.81 | | | | | ND | ND ZZ | ND | ND | | | Benzene | | 1 | | | | | - 4 | \\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | . (1) | | | ND | | ND | ND | | | Bromochloromethane | + | 1 | | | | - 4 | | 11- | | | | 1 | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | | +6 $)-$ | - | -07/1 | H. H. | | | ND | ND | ND | ND | | | Bromoform | | 1 | | | | 467/17 | 1 | 1 | | } ` | | | ND | ND | ND | ND | | | Bromomethane | | 1 | | | 1140 | $\mu \nu_{\sigma}$ | | 400 | | | | | ND | ND | ND | ND | | 6 | Carbon disulfide | + | | 1 | 1/2 | 11-11-1 | , | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | P-07- | 78 | 1 | 1 | | ND | ND | ND | ND | | 9 | Carbon Tetrachloride | + | 1 | | +6/// | 11/2 | 46.0 | 1015 | 1 - | ł | 1 | ł | | ND | ND | ND | ND | | MW09 | | + | 1 | 1 | lf:nh: | * | 1 | 1/1/1 | | | | | | ND | ND | | | | Σ | Chlorobenzene | | | 4/1-1 | 117- | | 700 | | | | | | | ND | ND | ND | ND | | | Chloroethane | - | 10 W | -644 | * | 1 00 W | 1/2 | 1 | | | <u> </u> | 1 | 1 | ND | | ND | ND | | | Chloroform | _ | +///- | - | - | 1/2/7 | - | | | ļ | <u> </u> | 1 | 1 | ND | ND | ND | ND | | | Chloromethane | + | 11. | 1 | - | 100 | | | | | | | - | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | | 10 to 10 | 10/ | | | | | | | | | | ND | ND | ND | | | cis-1,3-Dichloropropene | | | -1-11-1 | M-27 | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | 10/1/2 | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | 111/C | 112 | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | \rightarrow | 101. | _ | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | 7 | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | 8.72 | _ | | 1 | | | Toluene | | | | | | | | | | | | | ND | | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | ND | ND | ND | ND | | | Trichloroethene | | | | | | | | | | | | | 0.73 | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Chloride | 1 | 1 | | | İ | | İ | 1 | İ | | İ | | ND | ND | ND | ND | | | Xylene (Total) | 1 | 1 | i e | 1 | | | | | | 1 | | | NT | | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------|-----------------------------|--------|--|-----------------------------------|--|----------|--------|----------|--------|--------|--|----------|--|--------|--------|----------|----------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1.1.2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | + | 1 | | 1 | | 1 | 1 | | 1 | 1 | - | 1 | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | + | | } | | | | | | - | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | + | + | | 1 | | | | | | | | 1 | ND | ND | ND | ND | | | | - | 1 | } | - | - | - | - | 44.0 | - | - | <u> </u> | - | ND | | ND
ND | | | | Acetone
Acrylonitrile | | 1 | 1 | | | | | 110 | - | | - | | ND | ND 24 | | ND
ND | | | | _ | 1 | 1 | 1 | | | -4 | | 1 | | | | | | ND | | | | Benzene | _ | 1 | ļ | 1 | | - | | 112. | | 111-1 | | ļ | ND | ND | ND | ND | | | Bromochloromethane | | | | | | | Har- | 4 | -oth | | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | 0/1/1 | 12 | 4.1 | 1 | <u> </u> | | | ND | ND | ND | ND | | | Bromoform | | | | | -AF | 127 | | | | | | | ND | ND | ND | ND | | 0 | Bromomethane | | | | - 14 | | 14. | | 53/7 | 1 | | | | ND | ND | ND | ND | | 7 | Carbon disulfide | | | | -0-/// | 11 11 . | | 40 | 1 00 | | | | | ND | ND | ND | ND | | 3 | Carbon Tetrachloride | | | 1 | ron | 7.0 | 1 | 1111 | | | | | | ND | ND | ND | ND | | MW1 | Chlorobenzene | | | $\parallel \perp \parallel \perp$ | 112. | | الاحيا | A | | | | | | ND | ND | ND | ND | | _ | Chloroethane | | - 2 | 777 | 14. | 10 | 15 | | | | | | | ND | ND | ND | ND | | | Chloroform | | 11/1/15 | 13.3 | | 17377 | | | | | | | | ND | ND | ND | ND | | | Chloromethane | | 1/3 3 | | | 11 20. | | | | | | | | ND | | ND | ND | | | cis-1,2-Dichloroethene | | | 1.0 | 101 | , _ | | | | | | | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | | | 11.11 | V3/ | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | BIJJ. | 1.0 | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | الالحا | 16. | | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | 10111 | - | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | 7 | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | Ì | | | | ĺ | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | 1 | 1 | | 1 | i | 1 | i | | 1 | 1 | i | 1 | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | 1 | 1 | 1 | 1 | i | 1 | i | | 1 | 1 | i | 1 | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | ND | ND | ND | ND | | | Trichloroethene | 1 | | | | | | | | | | | | ND | ND | ND | ND | | | Trichlorofluoromethane | + | | 1 | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | - | | ND | ND | ND | ND | | | Vinyl Chloride | + | + | } | | - | - | - | | - | | - | | ND | ND | ND | ND | | | Xylene (Total) | - | - | 1 | - | <u> </u> | | <u> </u> | | - | - | <u> </u> | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|----------------------------------|--------|---|----------|--|-------------|--|--------|----------|----------|--|--------|--|--------|--------|----------|----------| | L | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | ľ | 4-Methyl-2-Pentanone | | | | | | | | 4 | | | | | ND | ND | ND | ND | | Ī | Acetone | | | | | | | | 4.1 | | | | | ND | ND | ND | ND | | Ī | Acrylonitrile | | | | | | | | | | | | | ND | ND | ND | ND | | ľ | Benzene | | | | | | | | 115 | | . 6 | | | ND | ND | ND | ND | | ľ | Bromochloromethane | | | | | | 100 | 164 | 14 | - 0 | 711 | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | 7/// | | 4. | -27/11 | 1 | | | ND | ND | ND | ND | | ľ | Bromoform | | | | | 4.0 | 15.44 | * | 1/1 | | | | | ND | ND | ND | ND | | ⋖ऻ | Bromomethane | | | | 4.1 | 1777 | 112 | | 100 | | | | |
ND | ND | ND | ND | | 7 | Carbon disulfide | | | | | | | 1 10 | F-07- | | | | | ND | ND | ND | ND | | Σ | Carbon Tetrachloride | | | | 4ULL | 1.4 | 14 | 411 | - | | | | | ND | ND | ND | ND | | MW 1 | Chlorobenzene | | | 11 12.0 | <i> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | | 100 | 1.4 | | | | | | ND | ND | ND | ND | | S | Chloroethane | | . 6 | 471 4 | 4. | sille. | 457 | | | | | | | ND | ND | ND | ND | | - 1 | Chloroform | | 14/15 | 111 | | 4.92 | - | | | | | | | ND | ND | ND | ND | | | Chloromethane | | +117-2 | - | - | 1404 | _ | | | | | | | ND | ND | ND | ND | | ŀ | cis-1,2-Dichloroethene | | - 4 | 4 0 | F 75 | | | | | | | | | ND | ND | ND | ND | | ŀ | cis-1,3-Dichloropropene | | | 11.51 | 141 | | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | 244 | | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | Mira. | 10 m | | | | | | | | | | ND | ND | ND | ND | | ŀ | Dichloromethane | | | - | | | | | | | | | | ND | ND | ND | ND | | ŀ | Ethylbenzene | + -• |) ~ _ | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | + | | | | | | | | | 1 | | 1 | ND | NT | NT | NT | | | Styrene | | 1 | | | | 1 | | | | 1 | | 1 | ND | ND | ND | ND | | ŀ | Tetrachloroethene | + | 1 | | | | | | | | | | | ND | ND | ND | ND | | ŀ | Toluene | | + | | | 1 | | | | | | | | ND | ND | ND | ND | | ŀ | trans-1,2-Dichloroethene | + | 1 | | | } | + | 1 | 1 | 1 | + | 1 | + | ND | ND | ND | | | | trans-1,3-Dichloropropene | + | 1 | | | } | + | 1 | 1 | 1 | + | 1 | 1 | ND | ND | ND | ND
ND | | | trans-1,4-Dichloro-2-buten | + | 1 | | | } | + | 1 | 1 | 1 | + | 1 | + | ND | ND | ND | ND | | | Trichloroethene | + | 1 | | | } | - | | 1 | 1 | 1 | 1 | 1 | ND | ND | ND | ND | | L | Trichlorofluoromethane | + | 1 | | | | 1 | | | | 1 | | 1 | ND | ND | ND
ND | ND | | | Vinyl Acetate | 1 | 1 | | 1 | | 1 | | | | 1 | | 1 | ND | ND | | | | | | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Chloride
Xylene (Total) | 1 | | <u> </u> | <u> </u> | ļ | | ļ | <u> </u> | . | | | | NT | ND | ND
ND | ND
ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | | 2008-S | | | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|---|--------|--|----------|-------------------|--------------------|---------|---------|--------|----------|----------|--|--------|----------|----------|--------|----------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | 1 | | | | | | | | 1 | 1 | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | 1 | | | | | | | | 1 | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | 1 | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | 1 | | | | | | | | 1 | | | ND | ND | ND | ND | | | 1,1-Dichloroethene | | 1 | 1 | | | | | | | 1 | 1 | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | | | | | | | | | | | | | | ND | | | | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND
ND | ND | ND | | | 1,2-Dibromoethane | | <u> </u> | <u> </u> | | | 1 | | | . | <u> </u> | <u> </u> | 1 | | | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acetone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acrylonitrile | | | | | | | | 120 | M | | | | ND | ND | ND | ND | | | Benzene | | | | | | | - 1 | | | | | | ND | ND | ND | ND | | | Bromochloromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | | This is | 14 | | MILLE | | | ND | ND | ND | ND | | | Bromoform | | | | | | 0/1/ | | et. | 22// | | | | ND | ND | ND | ND | | <u> </u> | Bromomethane | | | | | 4. | 165 Li | 1.0 | 1/1 | | 4 | | | ND | ND | ND | ND | | _ | Carbon disulfide | | | | d. | 1175 | 11/2 | 1 | 501 | 1 | | | | ND | ND | ND | ND | | MW1 | Carbon Tetrachloride | | | | | 1/1/ | | 4.40 | La. | | | | | ND | ND | ND | ND | | | Chlorobenzene | | | - 4 | LUJJ | Z-2 | The . | 1117 | 1 | | 1 | | | ND | ND | ND | ND | | Σ | Chloroethane | | | all the | بكالا | | - 61 | 1.4 | | | | | | ND | ND | ND | ND | | _ | Chloroform | | . 4 | 777 | 111 | alla. | 12 St A | | | | | | | ND | ND | ND | ND | | | Chloromethane | | 11/2 | 1/1/1 | | 4.01 | 12 | | | | | | | ND | ND | ND | ND | | | cis-1,2-Dichloroethene | | | - | 63 | 40 | | | | | | | | ND | ND | ND | ND | | | cis-1,3-Dichloropropene | | 1 | | 120 | } • • • | | | | | | | | ND | ND | ND | ND | | | Dibromochloromethane | | | 11/2/11 | 151 | | | | | | | | | ND | ND | ND | ND | | | Dibromomethane | | | 744 | 1 1-0- | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | 100 | 10 | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | 42744 | 1 | | | | | | | | 1 | | ND | ND | ND | ND | | | Methyl Iodide | 1 | 7 | | | | | | | | | 1 | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | T | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | 1 | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | 1 | | | | | 1 | + | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | 1 | + | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | 1 | + | | 7 ND | ND | 2.1 | | | Toluene | + | + | 1 | 1 | 1 | + | 1 | - | 1 | + | 1 | + | ND | ND | ND | ND Z.1 | | | trans-1,2-Dichloroethene | | + | | 1 | 1 | + | | | 1 | + | | + | ND | ND | ND | | | | | + | + | } | 1 | 1 | - | | | 1 | + | } | + | ND | ND | | ND
ND | | | trans-1,3-Dichloropropene
trans-1,4-Dichloro-2-buten | | | - | - | | 1 | 1 | - | | | 1 | + | ND | ND | ND | | | | Trichloroethene | | + | | | | | | | | 1 | 1 | 1 | ND | | ND | ND | | | | + | + | - | 1 | - | - | | | - | + | | + | ND
ND | ND
ND | ND | ND | | | Trichlorofluoromethane | | - | | | | - | | | | - | | | | | ND | ND | | | Vinyl Acetate | | | | | | 1 | | | | | <u> </u> | 1 | ND | ND | ND | ND | | | Vinyl Chloride | | | <u> </u> | | | | | | | | <u> </u> | | ND | ND | ND | ND | | | Xylene (Total) | | | | | | | | | | | | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | Location | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |----------|-----------------------------|--------|----------|----------------------------------|-----------------|-----------------|----------------|--------|--------|--|----------------|--------|----------|--------|--------|--------|--------| | | 1,1,1,2-Tetrachloroethane | | | | |] | | | | | | | | ND | ND | ND | ND | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | |
1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | 4-Methyl-2-Pentanone | | | | | | | | | | | | | ND | ND | ND | ND | | | Acetone | | | | | | | | 44. | | 1 | | | ND | ND | ND | ND | | | Acrylonitrile | | | | | | | | 15 | The same of sa | | | | ND | ND | ND | ND | | | Benzene | | 1 | | <u> </u> | | | 19 | | - | | | | ND | ND | ND | ND | | | Bromochloromethane | | | | | | 46. | 63 | 11- | | 74/ | | | ND | ND | ND | ND | | | Bromodichloromethane | | | | | | 100 | 401 | - | | 442 | | | ND | ND | ND | ND | | | Bromoform | | + | | <u> </u> | | 0/// | 1 | 4. 1 | ' | } " | | | ND | ND | ND | ND | | | Bromomethane | | 1 | | | 37 | $+\mu Z_{F}$ | - | | | | | | ND | ND | ND | ND | | 7 | Carbon disulfide | | 1 | | 0.1 | H-H-1 |) " | | | | | | | ND | ND | ND | ND | | 7 | Carbon Tetrachloride | | | | +04/// | $H \rightarrow$ | | 1873 | 1 | | | | | ND | ND | ND | ND | | MW1 | Chlorobenzene | | + | - 11 | +++ | 1 | 1 | -1111 | - | 1 | 1 | | 1 | ND | ND | ND | ND | | Σ | Chloroethane | | 4.1 | HH | 11/2 | | F 24 11 | 14 - | | 1 | 1 | 1 | + | ND | ND | ND | ND | | | Chloroform | | 100 | - 1 11/1 . | 4. | W W | 150 | | | | | | | ND | ND | ND | ND | | | Chloromethane | | +///-2 | 11/4 | 62 | 11-27-1 | | | | | | | | ND | | | | | | cis-1,2-Dichloroethene | | 1/2 . | | 24. | 100 | | | | | | | | ND | ND 4.1 | ND | ND | | | cis-1,3-Dichloropropene | | - | 4.98.90 | 101- | | | | | | <u> </u> | 1 | <u> </u> | ND | | ND | ND | | | | | - | -11-11 | 1437— | 1 | | | | | <u> </u> | | | | ND | ND | ND | | | Dibromochloromethane | - | 400 | DI_{II} | | | - | | ļ | . | . | ļ | - | ND | ND | ND | ND | | | Dibromomethane | - | 40-111 | 16. | <u> </u> | | | | | | | | | ND | ND | ND | ND | | | Dichloromethane | | 1014 | 1 1 | | | | | | | | | | ND | ND | ND | ND | | | Ethylbenzene | | 7 | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | | | | | | | | | | | | ND | ND | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | ND | ND | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Toluene | | <u> </u> | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | <u> </u> | | |] | | | | | | | | ND | ND | ND | ND | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | ND | ND | ND | ND | | | Trichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | Trichlorofluoromethane | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Acetate | | | | | | | | | | | | | ND | ND | ND | ND | | | Vinyl Chloride | | | | | | | | | | | | | ND | ND | ND | ND | | | Xylene (Total) | | | | | | | | | | | | | NT | ND | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012-S | |---------------|-----------------------------|--------|--|--------|--|---------|----------|--|--------|----------|--|--|--|------------|-----------|-----------|--------| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | | ND | ND | | | 1,1,1-Trichloroethane | | | | | | 1 | | | | | | | ND | | ND | ND | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | | ND | ND | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | | ND | ND | | | 1,1-Dichloroethane | | | | | | | | | | | | | 17.90 | | ND | | | | 1.1-Dichloroethene | | | | | | | | | | | | | ND | | ND | ND | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | | ND | ND | | | 1,2-Dibromo-3-chloropropan | | <u> </u> | | <u> </u> | | | | | | | | | ND | | ND | ND | | | 1,2-Dibromoethane | | <u> </u> | | <u> </u> | | | | | | | | | ND | | ND | ND | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | ND | ND | ND | ND | | | 1,2-Dichloroethane | | | | | | | | | | | | | 1.86 | | ND | ND | | | 1,2-Dichloropropane | | | | | | | | | | | | | 4.80 | 6.6 | 4.4 | | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | 3.54 | | ND | 5 | | | 2-Butanone | | | | | | | | | | | | | ND | | ND | ND | | | 2-Hexanone | | | | | | | | | | | | | ND | | ND | ND | | | 4-Methyl-2-Pentanone | 1 | | | | | | | | | | | | ND | | ND | ND | | | Acetone | 1 | | 1 | | } | 1 | | - | } | 1 | - | 1 | 0.72 | | ND
ND | ND | | | Acrylonitrile | - | | | | | 1 | - | 1 | — | 1 | | - | ND | ND | ND
ND | ND | | | Benzene | | - | | 1 | | 1 | | | 1/2 | - | | - | 3.31 | | | | | | Bromochloromethane | | | | 1 | | 1 | | 1 | - | | | | 3.31
ND | 4.4
ND | 3.7
ND | ND 2 | | | Bromodichloromethane | | | | | | - the | B 1 | 11/2 | | 1111 | | | ND | ND | | | | | Bromoform | | | | | | - 1- N | HAP- | | H70 | 77 | | | ND | | ND
ND | ND | | | | | <u> </u> | | <u> </u> | | | 1 | 12-16 | | 7 | | | ND | | | ND | | 3A | Bromomethane | | - | | | A CO | M. 11. | | | | 1 | | | | | ND | ND | | $\frac{2}{3}$ | Carbon disulfide | | <u> </u> | | 100 | 1.11 | 14. | | 2-2/-/ | 7 | ļ | | - | ND | ND | ND | ND | | Ì | Carbon Tetrachloride | | <u> </u> | | 10/// | 1/1 | | 101-3 | 10 | | | | | ND | ND | ND | ND | | ¥ | Chlorobenzene | | | | trnr | 7 - | _/_ | 17.17 | - | | | | | 1.01 | | ND | ND | | 2 | Chloroethane | | - | | 11/2 | - | -070 | 1/4 | | | | | | 0.97 | | ND | ND | | | Chloroform | | -42 | 777 | 4. | -16 | 100 | | | | | | | ND | | ND | ND | | | Chloromethane | | 11/1/2 | 130 | - | 17-27-7 | - | | | | | | | 0.96 | 6.4 | | ND | | | cis-1,2-Dichloroethene | | 113. | | | 1 24 | | | | | | | | 76.70 | | ND | | | | cis-1,3-Dichloropropene | | | -34-40 | 10/- | , | | | | | | | | ND | | ND | ND | | | Dibromochloromethane | | | 7777 | 17:37 | | | | | | | | | ND | | ND | ND | | | Dibromomethane | | | 411 | | | | | | | | | | ND | | ND | ND | | | Dichloromethane | | | 14 | | | | | | | | | | 8.07 | 10 | 9.2 | 3 | | | Ethylbenzene | | 1014. | - | | | | | | | | | | ND | ND | ND | ND | | | Methyl Iodide | | 7 | | | | | | | | | | | ND | | ND | ND | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | 0.61 | 3.1 | ND | ND | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | para-Xylene & meta-Xylene | | | | | | | | | | | | | ND | | NT | NT | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | Tetrachloroethene | | | | | | | | | | | | | 22.20 | 17 | 25 | | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | 3.26 | 7.3 | 6.2 | 3 | | | trans-1,3-Dichloropropene | | | | | | | | | | | | | ND | | ND | ND | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | ND | | ND | ND | | | Trichloroethene | | 1 | | 1 | | 1 | | | | 1 | i | | 26.90 | 23 | 28 | | | | Trichlorofluoromethane | | | 1 | 1 | | | | | | | | | 1.50 | | | ND | | | Vinyl Acetate | | | | | | | | | | | | | ND | | ND | ND | | | Vinyl Chloride | 1 | † | 1 | | | 1 | | | 1 | 1 | | | 11.10 | | 18 | | | | Xylene (Total) | 1 | | | | | I | | | | | | | | | ND | ND | **TABLE 2: Volatile Organic Compounds - Historical Results** | _ocation | Parameter | 2004-F | 2005-S | 2005-F | 2006-S | 2006-F | 2007-S | 2007-F | 2008-S | 2008-F | 2009-S | 2009-F | 2010-S | 2010-F | 2011-S | 2011-F | 2012 | 2-S | |----------|--------------------------------------|--------|-----------|----------------------------------|---------------|-----------|-------------------
--|---------------------|--------|----------|----------|----------|------------|----------|--------|---|-----| | | 1,1,1,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,1,1-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,1,2,2-Tetrachloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,1,2-Trichloroethane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,1-Dichloroethane | | | | | | | | | | | | | 17.80 | ND | ND | | 1: | | | 1,1-Dichloroethene | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,2,3-Trichloropropane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,2-Dibromo-3-chloropropan | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,2-Dibromoethane | | | | | | | | | | | | | ND | ND | ND | ND | | | | 1,2-Dichlorobenzene | | | | | | | | | | | | | 0.54 | ND | ND | ND | | | | 1,2-Dichloroethane | | 1 | | | | | | | | | | | 3.11 | ND | 4.0 | 3 ND | | | | 1,2-Dichloropropane | | 1 | | | | | | | | | | | 6.54 | ND | 7.4 | _ | 7. | | | 1,4-Dichlorobenzene | | | | | | | | | | | | | 8.86 | | ND | 1 | 1 | | | 2-Butanone | | | | | | | | | | | | | ND | ND | ND | ND | | | а | 2-Hexanone | | | | | | | | | | | | | ND | ND | ND | ND | | | | 4-Methyl-2-Pentanone | | | | | | | | | | | | | ND | ND | ND | ND | | | | Acetone | | 1 | | | | | | 44 | | 1 | | | 0.87 | | ND | ND | _ | | | Acrylonitrile | | 1 | | | | | _ | | 1 | | | | ND | ND | ND | ND | | | | Benzene | | 1 | | | | | 4 | | - | | 1 | | 5.56 | | 6.3 | | 4. | | | Bromochloromethane | | 1 | | | | . 104 | | 11/2 | | 11/16 | | | ND | ND | ND | ND | | | | Bromodichloromethane | | 1 | | | | - 10 M | HP | | 11 CO | #/ | | | ND | ND | ND | ND | | | | Bromoform | | | | | | DH1 | 1 | 4.1 | | - | | | ND | ND | ND | ND | | | | Bromomethane | | | | | 174 | H. P. J. | | HO H | | | 1 | | ND | ND | ND | ND | | | | Carbon disulfide | | | | 0.1 | HH |) '' ' | | (1 67-) | | | | | ND | ND | ND | ND | | | | Carbon Tetrachloride | | 1 | | 10/1/1 | H | 4. | 1013 | 1 | | | | | ND | ND | ND | ND | | | MM | Chlorobenzene | | - | 1 | hhh | 7 - | | - - | - | | | - | | 1.63 | | ND | ND | | | | Chloroethane | | - | W = W | 11- | 1 | 4041 | 198 | | | | + | | 1.03 | | ND | | | | | Chloroform | | 1-4E | , 1 111 1. | | - W | 1500 | | | | | | | 1.14
ND | ND | | ND | | | | | | +///- | 14. | - | 14-131-41 | - | | | | | | | 0.76 | | ND | ND | | | | Chloromethane cis-1,2-Dichloroethene | | 1/2 . | 1 | - Ja | 100 | | | | | | | | 101.00 | | ND | ND | 444 | | | cis-1,3-Dichloropropene | - | + - | 4. 10 til | 18) - 3 | | | | | | | - | 1 | | | ND | | 11 | | | | - | - | | <i>IF3</i>)— | | <u> </u> | | | | <u> </u> | <u> </u> | <u> </u> | ND
ND | ND
ND | ND | ND | | | | Dibromochloromethane | | 1202 | 11/1/4 | _ | | | | | | | - | | ND | ND | ND | ND | | | | Dibromomethane | - | * 57 //// | 1/2 | ļ | | <u> </u> | | . | | <u> </u> | <u> </u> | ļ | | | ND | ND | | | | Dichloromethane | - | 10. | - | ļ | | <u> </u> | | ļ | | | | ļ | 8.50 | | 1 | _ | 4. | | | Ethylbenzene
Mathul Ladida | | 7 | | | | <u> </u> | | ļ | | | | | ND | ND | ND | ND | | | | Methyl Iodide | | | | | | - | | | | | | | ND | ND | ND | ND | | | | Methyl Tertiary Butyl Ether | | | | | | | | | | | | | 0.96 | | ND | ND | | | | ortho-Xylene | | | | | | | | | | | | | ND | NT | NT | NT | | | | para-Xylene & meta-Xylene | | _ | | | | | | | | | | | ND | NT | NT | NT | | | | Styrene | | | | | | | | | | | | | ND | ND | ND | ND | | | | Tetrachloroethene | | | | | | | | | | | | | 22.70 | | 2 | _ | 3 | | | Toluene | | | | | | | | | | | | | ND | ND | ND | ND | | | | trans-1,2-Dichloroethene | | | | | | | | | | | | | 4.45 | | 7.3 | | 4. | | | trans-1,3-Dichloropropene | | | | | | | | | | ļ | <u> </u> | | ND | ND | ND | ND | | | | trans-1,4-Dichloro-2-buten | | | | | | | | | | | | | ND | ND | ND | ND | | | | Trichloroethene | | | | | | | | | | | | | 32.00 | | 28 | 3 | 3 | | | Trichlorofluoromethane | | | | | | | | | | | | | 1.71 | ND | 4. | | 1. | | | Vinyl Acetate | | | | | | | | | | | | | ND | ND | ND | ND | | | | Vinyl Chloride | | | | | | | | | | | | | 17.20 | ND | 2 | آ | 1: | | | Xylene (Total) | | 1 | | | | | | | | | | | NT | ND | ND | ND | | ## Appendix C Volatile Organic Compounds Trend Analysis ## **Appendix D** **Tables of Metals** Results in (mg/l) Table 3 Metals and Other Water Quality Parameters | Monitoring
Location | Parameter | OB01 | OB02 | OB02A | OB03 | OB03A | OB04 | OB04A | OB06 | 0807 | OB07A | OB08 | OB08A | OB10 | OB102 | OB105 | 0B11 | OB11A | 0B12 | 0B15 | 0B25 | ST015 | |------------------------|-----------------|------------|----------|-------------|-------|----------|-------|----------|---------------|---------------|------------|----------|----------|----------|----------|----------|----------|------------|------------|----------|----------|-------------| | | Alkalinity | 100 | 68 | 36 | 187 | 266 | 261 | 129 | 175 | 176 | 122 | 239 | 221 | 119 | 1056 | 51 | 217 | 279 | 116 | 51 | 249 | 99 | | | Ammonia | ND | ND | ND | 3.48 | 6.15 | 0.667 | 0.218 | ND | ND | ND | ND | ND | ND | 11.6 | 16.3 | ND | 1.11 | ND | ND | 0.731 | ND | | | Antimony | ND | | Arsenic | ND | ND | ND | ND | ND | 0.009 | 0.011 | ND 0.015 | ND | ND | ND | ND | ND | ND | | | Barium | 0.214 | 0.07 | 0.356 | 0.697 | 0.51 | 0.281 | 0.061 | 0.221 | 0.026 | 0.041 | 0.129 | 0.074 | 0.057 | 0.355 | 0.601 | 0.03 | 0.183 | 0.017 | 0.072 | 0.146 | 0.037 | | | Beryllium | ND 0.011 | ND | ND | ND | ND | ND | ND | | | Cadmium | ND 0.011 | 0.01 | ND | ND | ND | ND | ND | | | Calcium | 81.24 | 28.37 | 94 | 74.4 | 76 | 173 | 124 | 142 | 108 | 82.9 | 70.8 | 53.3 | 48.1 | 115 | 160 | 132 | 93.4 | 38.3 | 16.5 | 73.3 | 31.2 | | lts | Chloride | 322 | 49.9 | 334 | 222 | 245 | 473 | 531 | 383 | 199 | 244 | 42.8 | 55.5 | 100 | 602 | 356 | 407 | 300 | 76.9 | 3.95 | 73.5 | 157 | | esult | Chromium | ND | ND | ND | ND | ND | | ND | 0.013 | ND | ND | ND | ND | ND | ND | 0.166 | | ND | ND | ND | 0.03 | | | | Cobalt | 0.022 | ND | ND | 0.063 | 0.057 | | ND | 0.007 | ND | ND | 0.008 | 0.017 | 0.005 | 0.073 | | ND | 0.000 | ND | ND | 0.039 | ND | | M | COD | 5.4 | | ND | 24.3 | 31.1 | 34.1 | 33 | 44 | 11.7 | 16.9 | 9.9 | 8.6 | 7.5 | 227 | 140 | 32.8 | 30.4 | 8.1 | ND | 18.6 | 22.8 | | 12 | Copper | 0.012 | 0.006 | 0.005 | 0.008 | 0.01 | 0.038 | 0.03 | 0.031 | 0.009 | 0.006 | ND | 0.008 | | 0.051 | 0.293 | 0.009 | 0.006 | 0.005 | 0.007 | 0.037 | 0.008 | | 201 | Iron | 1.6 | 1.18 | 0.396 | 23.68 | 29.85 | 0.804 | 1.12 | 12.2 | 0.957 | 0.458 | 0.74 | 3.44 | 0.975 | 0.945 | 253 | 0.726 | 1.05 | | 6.6 | 31.7 | 0.846 | | | Lead | ND | ND | ND | ND | ND | | ND | 0.008 | | ND | ND | ND | ND | ND | 0.073 | ND | ND | ND | ND | 0.008 | ND | | | Magnesium | 48.58 | 11.97 | 53.1 | 42.7 | 52.7 | 88.9 | 88.8 | 61.3 | 33.6 | 48.3 | 17.7 | 21.8 | 25.8 | 97.4 | 168 | 67.4 | 69.9 | 24.5 | 21.3 | 57.7 | 12 | | ₹ | Manganese | 6.33 | 0.919 | 0.045 | 19.6 | 13.7 | 2.07 | 1.01 | 0.592 | 0.113 | 0.068 | 6.84 | 7.53 | 3.15 | 21.2 | 6.03 | 0.758 | 6.29 | 0.114 | 1.28 | 7.21 | 0.245 | | SPRING | Mercury | 4E-04 | ND | ND | 3E-04 | ND | ND | ND | 5E-04 | 3E-04 | | ND | ND | ND | ND | 0.006 | 1E-03 | | ND | ND | 0.001 | ND | | တ
| Nickel | 0.041 | | 0.014 | 0.022 | 0.019 | 0.018 | 0.023 | | ND
0.000 | ND
0.07 | 0.009 | 0.008 | | 0.093 | 0.283 | 0.034 | 0.019 | | 0.015 | 0.047 | 0.007 | | II <u>-</u> I | Nitrate | 1.56 | | 0.582 | ND | ND | | ND | 0.708 | 0.823 | | ND | ND | ND | | ND | ND | ND | 1.26 | | ND | 0.799 | | andfill | Nitrate+Nitrite | 1.57
ND | ND
ND | 0.592
ND | | ND
ND | | ND
ND | 0.905 | 0.875 | 1.02
ND | ND
ND 1.27
ND | ND
ND | ND
ND | 0.849
ND | | P | Nitrite
pH | 5.62 | 6.94 | 5.41 | 5.78 | 6.04 | 5.65 | 5.57 | 0.197
5.76 | 0.052
6.55 | 5.86 | 6.22 | 6.07 | 6.05 | 6.64 | 6.55 | | 5.59 | 5.51 | 5.5 | ND 7 | 7.55 | | <u>@</u> | Potassium | 4.57 | 3.76 | 4.82 | 7.95 | 13.1 | 7.03 | 5.73 | 7.39 | 3.4 | 2.45 | 2.85 | 2.79 | 3.02 | 39.9 | 58.6 | 5.13 | 6.41 | 3.26 | 2.12 | 10.7 | 4.16 | | | Selenium | ND | ND | ND | 0.005 | 0.006 | 0.032 | 0.037 | 0.012 | 0.005 | 0.006 | ND | ND | ND | 0.017 | 0.02 | | 0.41
ND | 3.20
ND | ND | 0.005 | | | Gude | Silver | ND | ND | ND | ND | ND | | ND | ND | X | Sodium | 77.79 | | 37.5 | 58.9 | 91 | 73.3 | 95 | 94.3 | 24.5 | 28.6 | 28 | 32.9 | 18.2 | 532 | 226 | 68 | 99.4 | 30 | 29.2 | 43.9 | 108 | | | Spec. Cond. | 1218 | 302.2 | 1120 | 1140 | 1379 | 1817 | 1752 | 1600 | 937.2 | 994.7 | 559.9 | 579.1 | 544.8 | 3558 | 3025 | 1559 | 1405 | 497.1 | 323.1 | 627.7 | 703.9 | | | Sulfate | 26.1 | 4.51 | 18.4 | 28.5 | 41.8 | 19.5 | 11.1 | 76.8 | 20.2 | 24.3 | 4.76 | ND | ND | 55.4 | 312 | 11.2 | 15.8 | 12 | 93.2 | 44.1 | 8.46 | | | TDS | 876 | 252 | 824 | 888 | 952 | 1632 | 1508 | 1156 | 708 | 748 | 348 | 364 | 480 | | 1776 | 1404 | 1048 | 340 | 272 | 568 | 392 | | | Thallium | ND | ND | ND | | ND ND | ND | ND | ND | | | Total Hardness | 420 | 116 | 414 | 400 | 420 | 714 | 622 | 582 | 412 | 408 | 236 | 252 | 210 | 640 | 960 | 596 | 500 | 194 | 140 | 356 | 122 | | | Turbidity | NT | | Vanadium | ND | | ND | ND | ND | ND | ND | 0.015 | ND | ND | ND | ND | ND | ND | 0.363 | ND | ND | ND | ND | 0.024 | ND | | | Zinc | 0.016 | 0.006 | 0.007 | 0.018 | 0.014 | 0.007 | 0.023 | 0.055 | 0.006 | ND | 0.006 | 0.01 | 0.007 | 0.013 | | | 0.021 | 0.005 | 0.097 | 0.112 | 0.016 | Note: MCL exceedances are indicated in Red Table 3 Metals and Other Water Quality Parameters | Monitoring
Location | Parameter | ST120 | ST65 | ST70 | ST80 | MW1B | MW2A | MW2B | MW3A | MW3B | MW04 | 90WW | MW07 | MW08 | 60WM | MW10 | MW11A | MW11B | MW12 | MW13A | MW13B | |------------------------|-----------------|-------|-----------|-------|-------|-------|-------|-------|-------|---------|-------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | Alkalinity | 52 | 237 | 128 | 34 | 58 | 46 | 40 | 24 | 111 | 56 | 238 | 42 | 166 | 34 | 65 | 33 | 68 | 12 | 227 | 742 | | | Ammonia | ND | ND | 0.383 | ND | | Antimony | | ND | | Arsenic | ND | | Barium | 0.04 | 0.048 | 0.071 | 0.035 | 0.008 | 0.021 | 0.006 | 0.223 | 0.099 | 0.072 | 0.365 | 0.058 | 0.12 | 0.068 | 0.116 | 0.138 | 0.025 | 0.635 | 0.687 | 0.075 | | | Beryllium | ND | | Cadmium | ND 0.006 | ND | | Calcium | 23.3 | 30.6 | 56.8 | 14.2 | 8.77 | 10.5 | 9.89 | 17.2 | 42.3 | 40.4 | 78.7 | 41.7 | 70.1 | 10.48 | 16.1 | 11.4 | 14.3 | 65.2 | 29.1 | 91.2 | | Its | Chloride | 110 | 136 | 122 | 45.8 | 2.75 | 2.65 | ND | 5.28 | 3.49 | 145 | 243 | 70.3 | 198 | 12.1 | 8.31 | 4.17 | 4.9 | 348 | 86.1 | 89.5 | | esult | Chromium | | ND | 0.023 | ND | 0.009 | 0.04 | ND | 0.082 | 0.041 | 0.008 | 0.007 | ND | ND | 0.009 | 0.01 | 0.035 | ND | 0.018 | 0.085 | ND | | | Cobalt | ND | ND | ND | ND | ND | | ND | 0.04 | • • • • | ND | 0.374 | 0.007 | ND | ND | 0.005 | 0.014 | ND | ND | 0.068 | ND | | 2 | COD | 9.7 | 32.6 | 17.2 | 10.3 | ND | ND | ND | 6.3 | 6.7 | 3.1 | ND | 14.6 | 11.5 | ND | 4.4 | ND | ND | 6.1 | 10.1 | 12.1 | | 12 | Copper | 0.009 | 0.008 | 0.01 | 0.006 | 0.01 | 0.028 | 0.006 | 0.122 | 0.04 | 0.015 | 0.024 | 0.012 | 0.008 | 0.008 | 0.027 | 0.045 | 0.007 | 0.017 | 0.197 | ND | | 201 | Iron | 0.474 | 0.507 | 1.36 | 0.741 | 2.22 | | ND | 86.1 | 19.4 | 7.69 | 4.76 | 0.478 | 1.15 | 3.05 | 9 | 22.56 | 1.37 | 4.09 | 108 | | | | Lead | ND 0.044 | 0.014 | | 0.014 | ND | ND | ND | ND | 0.007 | ND | ND | 0.033 | ND | | 9 | Magnesium | 11.5 | 29 | 16.5 | 7.92 | 5.74 | 3.59 | 2.44 | 28.1 | 11.7 | 25.5 | 56.3 | 25.7 | 40.5 | 7.22 | 9.78 | 11.7 | 7.72 | 32.7 | 47 | | | | Manganese | 0.085 | 0.086 | 0.436 | 0.079 | 0.054 | 0.148 | 0.039 | 1.17 | 0.371 | 0.549 | 44.4 | 0.681 | 0.01 | 0.242 | 0.158 | 0.451 | 0.035 | 0.155 | 1.88 | | | PRIN | Mercury | ND | ND | ND | ND | ND | 6E-04 | ND 0.003 | ND | | S | Nickel | 0.008 | 0.009 | 0.008 | | 0.008 | 0.032 | 0.005 | 0.075 | 0.036 | 0.016 | 0.043 | 0.007 | 0.007 | 0.009 | | 0.031 | ND | 0.021 | 0.077 | 0.006 | | | Nitrate | 1.33 | 0.621 | 1.489 | 1.68 | | ND | ND | ND | ND | 0.47 | ND | 29.09 | 14.79 | 1.47 | | 1.29 | 2.56 | 4.43 | 1.97 | 1.88 | | ΙΞ | Nitrate+Nitrite | 1.38 | 0.631 | 2 | 1.73 | • • • | ND | ND | ND | ND | | | 29.1 | 14.8 | 1.48 | | 1.34 | 2.57 | 4.44 | 2.02 | | | andfill | Nitrite | ND | ND | 0.511 | | ND | a | pH | 7.38 | 7.56 | 8.51 | 8.08 | 6.12 | 6.08 | 5.39 | 5.85 | 8.47 | 5.96 | 5.86 | 5.62 | 6.59 | 5.08 | 5.8 | 5.51 | 6.36 | 4.8 | 4.93 | | | | Potassium | 2.25 | 13.8 | 13.1 | 2.57 | 1.36 | 2.12 | 1.66 | 15 | 7.83 | 4.51 | 3.63 | 3.09 | 11.8 | 2.09 | 2.78 | 4.85 | 1.12 | 4.49 | 22.6 | | | nde | Selenium | ND 0.01 | ND | ı | Silver | ND | O | Sodium | 65.1 | 136 | 77.1 | 28.2 | 8.88 | 10.4 | 8.64 | 4.33 | 48.6 | 29.7 | 70.9 | 22.7 | 106 | 4.26 | | 4.66 | 9.38 | 96.2 | 15.1 | 18.9 | | | Spec. Cond. | 489.4 | 872.7 | 691 | 234.2 | 97.9 | 118.1 | 76 | | 223.9 | 587.4 | 1228 | 601.2 | 1154 | 105.1 | 144.6 | 93.3 | 156 | 1142 | 362.1 | 713.4 | | | Sulfate | 7.76 | 25.4 | 41.4 | 5.77 | | ND | ND | ND | 65.7 | | 43.4 | 5.6 | 67.4 | ND | 8.02 | 5.83 | | 13.9 | ND | 7.55 | | | TDS | 284 | 532 | 448 | 168 | 92 | 84 | 92 | 112 | 268 | 528 | 976 | 528 | 776 | 80 | | 64 | 132 | 1012 | 392 | | | | Thallium | ND | ND
470 | ND ND
170 | ND | ND | ND 50 | ND | ND 50 | ND | ND | ND | ND | | | Total Hardness | 98 | 178 | 188 | 58 | 60 | 32 | 30 | 50 | 114 | 188 | 470 | 198 | | 50 | | 52 | 62 | 276 | 164 | | | | Turbidity | | | NT | | NT | | NT | NT | | NT | | Vanadium | ND 0.1 | | ND | 0.005 | ND | ND | ND | 0.024 | 0.043 | 0.006 | ND | | ND | | | Zinc | 0.011 | 0.005 | 0.014 | 0.006 | 0.018 | 0.037 | 0.008 | 0.235 | 0.072 | 0.031 | 0.062 | 0.015 | 0.01 | 0.024 | 0.034 | 0.079 | 0.011 | 0.039 | 0.231 | 0.005 | Note: MCL exceedances are indicated in Red Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | _ | | | | | | | | <u> </u> | | | | | | | |-------------|------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 104 | 95 | 103 | 93 | 112 | 100 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND NT | ND | | Arsenic | ND NT | ND | | Barium | 0.1027 | 0.0588 | 0.1456 | 0.036 | 0.1325 | 0.1065 | 0.1459 | 0.1381 | 0.1348 | 0.1286 | NT | 0.1465 | 0.164 | 0.162 | 0.169 | 0.182 | 0.191 | 0.214 | | | Beryllium | ND | ND | | ND | ND | ND | ND | | ND | | NT | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND | ND | | | ND | | | | NT | | NT | | ND | ND | ND | ND | ND | ND | | | Calcium | NT 64.9 | 67.6 | | 76.2 | 73.8 | | | | Chloride | | NT | | | | | | | NT | | NT | NT | 196 | | | 262 | 291 | 322 | | _ | Chromium | ND | ND | | | ND | ND | ND | | ND | | NT | | ND | | ND | ND | ND | ND | | 000 | Cobalt | 0.0054 | | 0.0069 | | 0.007 | 0.0036 | 0.0051 | 0.0094 | 0.0039 | | NT | ND | 0.009 | 0.0084 | 0.0101 | 0.0147 | 0.0289 | | | OB01 | COD | | NT | | | NT | | NT | | NT | | NT | | ND | ND | 5.1 | | ND | 5.4 | | | Copper | 0.0103 | | 0.0114 | 0.0105 | | 0.0107 | 0.0069 | 0.0104 | 0.0071 | 0.0072 | | ND | 0.007 | 0.0096 | 0.0094 | 0.0063 | 0.00645 | | | ō | Hardness | | | | | | | | | NT | | NT | NT | 330 | 320 | 350 | 364 | 390 | | |) it | Iron | | | | | | | | | NT | | NT | | ND | ND | 0.469 | 0.837 | 0.515 | | | ocation | Lead | ND | ND | | | ND | 0.0025 | | | ND | | NT | | ND | | ND | ND | 0.0054 | | | 1 1 | Magnesium | | NT | | | | | | | | | NT | NT | 36 | | | | | | |] B | Manganese | 0.7486 | 0.0745 | 0.845 | 0.1334 | | | 1.231 | | NT | | NT | NT | 2.77 | 3.17 | | | 7.98 | | | | Mercury | ND | ND | ND | | ND | ND | ND | 0.0004 | | | NT | | ND | | ND | ND | ND | 0.00036 | | <u> </u> | Nickel | 0.0088 | 0.0033 | 0.0125 | 0.0035 | | 0.0131 | 0.0177 | 0.0194 | 0.0182 | 0.0152 | | 0.0182 | 0.026 | 0.0264 | 0.0304 | 0.0307 | 0.0381 | 0.0406 | | į | Nitrate | NT | | | | | | | | NT | | NT | NT | 1.67 | 1.94 | 1.907 | 1.79 | 1.34 | | | l o | pH | | | | | | | | | NT | | NT | NT | 5.82 | 5.08 | 0.00 | 0.04 | 5.51 | 5.62 | | Š | Potassium | NT
ND | NT
ND | | | | NT
ND | | | NT
ND | | NT
NT | NT | 3.52
ND | 3.64 | | | 3.78 | 4.57
ND | | | Selenium | ND
ND | ND
ND | | | | ND
ND | | | ND
ND | | ND | | ND
ND | | ND
ND | ND
ND | ND
ND | ND | | | Silver
Sodium | | NT | | | | | | | | | NT | NT | 47.4 | 54.5 | | 58.2 | 66.3 | | | | Spec. Cond. | | NT | | | | | | | | | | | 855.9 | | 31.6 | 36.2 | 980.9 | | | | Sulfate | | | | | | | | | NT | | NT
NT | NT
NT | 26.4 | 920.7 | 26.6 | 26.8 | | 1210 | | | TDS | | | | | | | | | NT | | NT | | 776 | 24.9
912 | | | | | | | Thallium | ND
ND | ND
ND | | ND
ND | 0.0013 | | | | ND | | NT | NT
ND | ND | | 1176
ND | ND 856 | ND | ND | | | Turbidity | | | | | | |
 | NT | | NT | NT | 0.186 | | | 1.96 | | NT | | | Vanadium | ND | ND | | | | ND | ND | | ND | | NT | | 0.186
ND | 0.18
ND | 0.96
ND | ND | ND | ND | | | Vanadium
Zinc | NT | NT | | | NT | NT | NT | 0.0157 | | | | 0.012 | | טא
0.013 | | 0.0116 | 0.0128 | | | | ZITIC | IN I 0.0157 | 0.0084 | 0.0161 | IN I | 0.012 | טאו | 0.013 | 0.0107 | 0.0116 | 0.0128 | 0.0163 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 1 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | ,
To | | | | | | | | ٦ | Ì | | |-------------|-----------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 67 | 57 | 72 | 70 | 72 | 68 | | | Ammonia | NT ND | ND | ND | | | ND | | | Antimony | ND NT | ND | | Arsenic | ND NT | ND | | Barium | 0.1579 | 0.1567 | 0.1684 | 0.1443 | 0.1971 | 0.1508 | 0.2539 | 0.2817 | 0.2464 | 0.1635 | 0.1338 | 0.1568 | 0.296 | 0.344 | 0.126 | 0.531 | 0.0771 | 0.0702 | | | Beryllium | ND NT | ND | | Cadmium | ND NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | NT 60.6 | 73.9 | 39.1 | 72.2 | 28.2 | 28.37 | | | Chloride | NT 212 | 264 | 90 | 47.3 | 51.1 | 49.9 | | ا م | Chromium | ND | OB02 | Cobalt | 0.003 | ND | 0.0034 | ND | 0.0055 | ND | 0.0049 | 0.0065 | ND | ND | ND | ND | 0.0057 | 0.0071 | ND | 0.0587 | ND | ND | | l ö | COD | NT ND | ND | ND | ND | ND | ND | | | Copper | ND | 0.0106 | 0.0154 | 0.0176 | 0.0267 | 0.0101 | 0.0054 | 0.008 | 0.0192 | 0.0052 | 0.0074 | 0.0055 | 0.006 | 0.0103 | 0.0069 | ND | ND | 0.00631 | | ocation | Hardness | NT 350 | 376 | 169 | 130 | 125 | 116 | | at | Iron | NT 2.66 | 2.59 | 0.818 | 25.2 | 0.768 | 1.18 | | 8 | Lead | ND | ND | ND | ND | 0.0049 | 0.0022 | ND | - | Magnesium | NT | NT | NT | NT | NT | 32.2 | 43.3 | 17.7 | 59.3 | 12.1 | 11.97 | | Monitoring | Manganese | 1.429 | 0.5523 | 1.252 | 0.2375 | 1.3188 | 0.1466 | 1.314 | | NT | NT | NT | NT | 1.21 | 1.34 | 1.24 | 10.1 | 0.876 | 0.919 | | ı <u>.</u> | Mercury | ND | ND | ND | 0.1694 | | ND | ND | | ND | | ND | | | | ND | ND | | ND | | 원 | Nickel | 0.0043 | 0.0035 | 0.0046 | 0.004 | | 0.0022 | | 0.0088 | | 0.0028 | | 0.0021 | 0.0082 | 0.011 | | 0.0168 | | ND | | l E | Nitrate | NT | | | | | NT | | | NT | | NT | | ND | ND | ND | ND | ND | ND | | Ĭ | pH | NT | | | | | NT | | | NT
NT | | NT
NT | NT | 8.27
5.91 | 5.35
7.07 | 4.40 | 40.7 | 6.71 | 6.94
3.76 | | | Potassium
Selenium | NT
ND | NT
ND | ND | | | NT
ND | NT
ND | | ND | | ND | NT
ND | | | 4.43
ND | 13.7
ND | 3.99
ND | 3.76
ND | | | Silver | ND | ND | ND | | | ND | ND | | ND | | ND | | | | ND | ND | ND | ND | | | Sodium | NT | NT | | | | NT | | | | | NT | NT | 22.6 | 30.6 | 17.8 | 111 | 11 | 15.64 | | | | NT | NT | | | | NT | | | | | NT | NT | 665 | 910.3 | | | 318.1 | 302.2 | | | Sulfate | NT | NT | | | NT | NT | | | NT | | NT | NT | 13.5 | 14.9 | 7.38 | 4.24 | 5.87 | | | | TDS | NT 780 | 1008 | 388 | 336 | 1264 | 252 | | | Thallium | ND | ND | | | | ND | ND | | ND | | ND | | | ND | ND | ND | | ND | | | Turbidity | NT | | | | | NT | | | | | NT | NT | 10.3 | 6.4 | | 33.3 | | NT | | | Vanadium | ND | ND | | ND | 0.0021 | | ND | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | L NIT | Zinc | NT 0.017 | 0.0176 | 0.0049 | 0.0074 | 0.0091 | ND | 0.0187 | 0.00533 | 0.00773 | 0.00643 | 0.00627 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 2 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | <u>Б</u> . | _ | ٥.۵ | | ۵.۵ | | ם , | | ۵ ۳ | | 5 6 | _ | Б <u>С</u> | | 50_ | _ | ם מ | |-------------|----------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 38 | 36 | 40 | 35 | 36 | 36 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | ND | | | | ND | ND | | ND | ND | NT | 0.0033 | | | ND | ND | ND | ND | | | Arsenic | ND | ND | ND | NT | | ND | | ND | ND | ND | ND | | | Barium | 0.0976 | 0.1032 | 0.1403 | 0.1033 | | 0.1035 | 0.2976 | 0.2861 | 0.1479 | 0.2413 | | 0.2743 | 0.354 | 0.297 | 0.345 | 0.349 | 0.397 | 0.356 | | | Beryllium | ND | ND | ND | | | ND | ND | | | ND | ND | | ND | | ND | | ND | ND | | | Cadmium | ND | ND | | | ND | | | | | | NT | | ND | ND | ND | ND | ND | ND | | | Calcium | | | | | | | | | | NT | NT | NT | 77.5 | 76.4 | | 82.9 | | 94 | | | Chloride | | NT | | | | | | | | NT | NT | NT | 280 | 286 | | | 350 | | | ∢ | Chromium | | ND | | | | ND | | | | ND | ND | | | | ND | ND | | ND | | OB02 | Cobalt | | ND | ND | | | ND | ND | | | ND | ND | | ND | | ND | ND | ND | ND | | mag | COD | | NT | NT | | | NT | NT | | | NT | NT | | ND | | ND | ND | ND | ND | | _ | Copper | | ND | 0.0154 | 0.0159 | | 0.0137 | 0.0057 | 0.0062 | 0.0103 | 0.0045 | 0.0061 | 0.0064 | 0.0054 | 0.0075 | 0.0077 | 0.0053 | | 0.00507 | | | Hardness | | | | | NT | | | | NT | NT | NT | NT | 390 | 353 | 420 | 391 | 463 | | | ≒ | Iron | | | | | NT | | | | | NT | NT | NT | 0.414 | 0.6 | 0.682 | | 0.58 | | | ocation | Lead | ND | ND | ND | | ND | | | | | ND | ND | | ND | ND | ND | ND | ND === 1 | ND | | ĕ | Magnesium | | NT | NT | | NT | | | | | NT | NT | NT | 46.4 | 44.4 | 52.3 | 53.4 | 59.1 | 53.1 | | | Manganese | 0.0217 | 0.0327 | 0.0366 | 0.0313 | 0.0303 | 0.0128 | | | | NT | NT | NT | 0.0381 | 0.0382 | 0.0449 | 0.0513 | 0.0465 | | | ê | Mercury | ND | ND | ND | | ND | 0.0013 | | | ND | <u> </u> | Nickel | 0.0052 | 0.004 | 0.0049 | 0.0059 | 0.0064 | 0.006 | 0.0061 | 0.0082 | 0.0092 | 0.0059 | 0.0077 | 0.0073 | 0.0122 | 0.0099 | 0.012 | 0.011 | 0.0114 | | | 일 | Nitrate | NT | NT | | | | | | | | NT | NT | NT | 0.5894 | 0.582 | 0.589 | 0.543 | 0.576 | | | | pH | | | | | | | | | | NT | NT | NT | 5.75 | 4.77 | 4.00 | | 5.09 | | | Monitoring | Potassium | | NT | | | | | | | | NT | NT | NT | 4.73 | 4.1 | 4.69 | 5.2 | | | | = | Selenium
Silver | ND
ND | ND
ND | | | | ND | | | | ND
ND | ND | | ND
ND | | ND
ND | ND
ND | ND
ND | ND
ND | | | | | | | | | ND | | | | | ND
NT | | 31.2 | | | | 34.9 | | | | Sodium
Space Cond | | NT | | | | | | | | | NT
NT | NT
NT | 636.7 | 32.5
925.5 | 35 | 31.0 | 1263 | | | | | | | | | | | | | | NT | NT | NT | 22.4 | 16.2 | 25.4 | 17.8 | | | | | Sulfate
TDS | | | | | | | | | | NT | NT | NT | 1088 | 1072 | 1192 | 288 | 21.5
68 | | | | Thallium | ND | ND | | | | ND | | | | ND | ND | | ND | _ | ND | | | ND | | | Turbidity | | | | | | | | | | | NT | NT | 3.83 | 1.16 | | 0.416 | | NT | | | Vanadium | | ND | | | | | | | | | ND | | | | 0.891
ND | 0.416
ND | ND | ND | | | Zinc | | | | | | | NT | 0.0068 | 0.0156 | | ND
ND | 0.0131 | | 0.00713 | 0.0081 | 0.00823 | | | | | ZITIC | 1 1 1 | 141 | 141 | 141 | 141 | 141 | 111 | 0.0000 | 0.0100 | שויו | סויון | 0.0131 | טא | 0.00713 | 0.0001 | 0.00623 | 0.00763 | 0.00652 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 3 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 265 | 321 | 242 | 267 | 216 | 187 | | | Ammonia | NT 2.39 | 6.46 | 2.9 | 4.97 | 2.56 | 3.48 | | | Antimony | ND NT | ND | | Arsenic | 0.0027 | 0.0085 | 0.0085 | 0.0232 | 0.0079 | 0.0066 | 0.0023 | 0.0023 | 0.0046 | 0.004 | ND | ND | 0.0024 | ND | ND | ND | ND | ND | | | Barium | 0.1768 | 1.353 | 1.896 | 1.69 | 0.1124 | 1.101 | 0.6512 | 0.7963 | 0.9091 | 0.7536 | 0.5928 | 0.5995 | 0.588 | 0.856 | 0.592 | 0.736 | 0.58 | 0.697 | | | Beryllium | ND NT | ND | | Cadmium | ND | ND | ND | ND | 0.0039 | ND | ND | NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | NT 59.9 | 80.3 | 62.3 | 69 | | | | | Chloride | NT | NT | | | | | | | NT | | NT | NT | 134 | 193 | | | 163 | | | I | Chromium | ND | ND | ND | | ND | ND | ND | | ND | ND | NT | | ND | ND | ND | ND | ND | ND | | B03 | Cobalt | 0.0318 | 0.0755 | 0.0614 | 0.0711 | 0.0029 | 0.0593 | 0.0555 | 0.0674 | 0.0581 | 0.0556 | 0.053 | 0.0569 | 0.0643 | 0.0662 | 0.0659 | 0.0629 | 0.0554 | 0.0634 | | | COD | | NT | NT | | NT | NT | NT | | NT | | NT | NT | 13.6 | 34.9 | 10.1 | 28.8 | 16.8 | | | 0 | Copper | | ND | 0.0132 | 0.0145 | | 0.0093 | 0.0499 | 0.0064 | 0.0113 | 0.0066 | 0.0077 | 0.0978 | 0.0063 | 0.0084 | 0.0124 | 0.0076 | | 0.0082 | | l p | Hardness |
NT | | | | NT | | NT | | NT | | NT | NT | 690 | 700 | 400 | 3600 | 410 | | | l Ė l | Iron | NT | | | | NT | | | | NT | | NT | NT | 28.8 | 34.6 | 25 | | 22.19 | | | ocation | Lead | 0.0029 | | ND | 0.003 | 0.0027 | 0.0031 | 0.02 | | ND | | | | | ND | ND | ND | ND | ND | | 9 | Magnesium | NT | NT | | | NT | | | | | | | NT | 33.2 | 52.8 | 35.6 | 47.1 | 41.1 | 42.7 | | JE | Manganese | 9.801 | 18.17 | 19.31 | 20.5775 | 19.79 | 20.7743 | | | NT | | | NT | 18.5 | 18.8 | 21.3 | 18.5 | 19 | | | l ù | Mercury | 0.0003 | | ND | 0.005 | | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | 0.00025 | | ir | Nickel | 0.0114 | 0.0183 | 0.0109 | 0.0047 | 0.0172 | 0.0171 | 0.0408 | 0.019 | | 0.0168 | 0.0142 | 0.09 | 0.0183 | 0.0167 | 0.0197 | 0.0176 | 0.0164 | | | Monitoring | Nitrate | NT | | | | | | | | NT | | | | ND | ND | ND | ND | ND | ND | | l K | pH | | | | | | | | | NT | | | NT | 6.19 | 4.74 | | | 5.97 | 5.78 | | | Potassium | | NT | | | | | | | NT | | | NT | 10.2 | 10.9 | | 10.1 | 7 | 7.95 | | | Selenium | | NT | | | | | | | | | | | | ND | ND | ND | ND | 0.00545 | | | Silver | | ND | 0.0048 | | | ND | | | ND | | ND | 0.0154 | | ND | ND | ND | ND | ND | | | Sodium | | ND | ND | | | ND | | | | | NT | ND | 35.9 | 92.8 | 41.6 | 74.2 | 44.2 | 58.9 | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 902 | 1405 | | | 814.1 | 1140 | | | Sulfate | | | | | | | | | NT | | | NT | 8.84 | 31.4 | 16.7 | 41.4 | 22 | | | | TDS | | NT | | | | | | | NT | | | NT | 564 | 984 | | | 804 | | | | Thallium | ND | ND | 0.0012 | 0.0012 | | ND | | | ND | 0.0015 | | | | | ND | | | ND | | | Turbidity | 248 | | NT | | | | | | NT | | NT | NT | 11 | | | | | NT | | | Vanadium | ND | 0.0039 | 0.0059 | 0.0078 | | | 0.0219 | | 0.0023 | | ND | | | ND | ND | ND | ND | ND | | | Zinc | NT 0.0126 | 0.0253 | 0.0208 | ND | 0.0336 | ND | 0.0118 | 0.0165 | 0.0148 | 0.0141 | 0.0175 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 4 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |-------------|-------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | NT 317 | 461 | 270 | 340 | 226 | 266 | | | Ammonia | NT 6.47 | 8.93 | 4.35 | 7.91 | 5.09 | 6.15 | | | Antimony | ND | | Arsenic | 0.0047 | 0.004 | 0.0027 | 0.0036 | 0.0034 | 0.0021 | 0.0033 | 0.0046 | 0.008 | 0.0032 | | ND | 0.0036 | | ND | ND | ND | ND | | | Barium | 0.8541 | 0.6897 | 0.6416 | 0.4988 | 0.57 | 0.4668 | 0.6407 | 0.9942 | 0.658 | 0.5139 | 0.5699 | 0.593 | 0.568 | | 0.581 | 0.0796 | | | | | Beryllium | ND | ND | ND | | | ND | ND | ND | ND | | | ND | ND | ND | ND | | ND | ND | | | Cadmium | ND | ND | ND | ND | 0.0031 | 0.0022 | | NT | | | | NT | ND | ND | ND | ND | ND | ND | | | Calcium | NT | NT | | | | NT | | NT | | | | NT | 69.4 | 91.6 | 66 | | | | | | Chloride | NT | | | | | NT | | NT | | | | NT | 194 | | 176 | | | | | ₹ | Chromium | ND | ND | ND | | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | | ND | ND | | OB03, | Cobalt | 0.0665 | 0.0744 | 0.0612 | 0.082 | 0.0654 | 0.0584 | 0.0658 | 0.084 | 0.0608 | 0.0609 | 0.0617 | 0.063 | 0.0698 | 0.0458 | 0.0684 | | 0.0563 | | | <u> </u> | COD | NT | | | | | NT | NT | NT | NT | NT | | NT | 19.1 | 38.5 | 12.1 | 35 | | | | | Copper | 0.0142 | | ND | ND | 0.0141 | 0.0089 | 0.0054 | 0.0101 | 0.0079 | 0.0056 | 0.0083 | | 0.0064 | 0.0084 | 0.008 | | | 0.00958 | | | Hardness | NT | NT | | | | NT | | NT | NT | | | NT | 700 | | | 580 | | | | ≒ | Iron | NT | NT | | | | NT | | NT | | | | NT | 39.4 | | 31 | | 29.71 | 29.85 | | ocation | Lead | ND
5 00 4 | ND | ND | | ND
47.00 | 0.0026 | | ND | | | | ND | ND | ND | ND | | ND | ND 50.7 | | | Magnesium | 5.824 | 2.812 | 17.89 | 2.9275 | 17.88 | | 15.08 | | | | | NT | 44.4
13.3 | 66.8 | 41.6 | 15.8
0.982 | 48.7
14.2 | | | <u> </u> | Manganese | NT
ND | NT
ND | NT
ND | | NT
ND | NT
ND | NT
ND | NT
ND | NT
ND | | | NT
ND | 13.3
ND | 6.35
ND | 16.4
ND | 0.962
ND | ND | 13.7
ND | | ľ | Mercury
Nickel | 0.0198 | 0.0167 | 0.0163 | 0.0121 | 0.0178 | 0.0132 | 0.0164 | 0.0219 | 0.0166 | 0.0164 | 0.0166 | 0.016 | 0.02 | 0.0157 | 0.0194 | | 0.0158 | | | Ë | Nitrate | NT | NT | NT | | | NT | | NT | 0.0100
NT | | | NT | ND | ND | 0.0194
ND | ND | 0.0138
ND | 0.0163
ND | | 본 | pH | NT | NT | | | | NT | | NT | | | | NT | 5.76 | | ND | IND | 6.03 | | | <u> </u> | Potassium | NT | | | | | NT | | NT | | | | NT | 12.4 | 19.2 | 9.18 | 4.68 | | | | Monitoring | Selenium | | ND | ND | 0.0029 | | ND | ND | 0.003 | | | | ND | 0.0024 | _ | ND | | ND | 0.00586 | | - | Silver | ND | ND | | | | ND | | ND | | | | ND | | Sodium | NT | | | | | NT | | NT | | | | NT | 70.3 | 132 | 58.5 | 14.4 | | | | | Spec. Cond. | NT | | | | | NT | | | | | | NT | 1023 | 1661 | 00.0 | | 975.1 | 1379 | | | Sulfate | NT | | | | | NT | | NT | | | | NT | 33.5 | 75.4 | 26.9 | 58.4 | 31.5 | | | | TDS | NT | NT | | | | NT | | NT | | | | NT | 780 | | 704 | 980 | | | | | Thallium | ND | ND | 0.0013 | | 0.0012 | | | ND | ND | | | ND | ND | ND | ND | | ND | ND | | | Turbidity | NT | | NT | | | NT | | NT | | | | NT | 39.4 | 271 | 13.3 | | | NT | | | Vanadium | 0.0051 | 0.0033 | 0.0018 | 0.0021 | 0.0022 | 0.0011 | 0 | 0.0003 | 0.0113 | 0.0021 | 0.0036 | 0.0005 | | ND | ND | ND | ND | ND | | | Zinc | NT | | NT | | NT | 0.0064 | 0.017 | 0.0134 | 0.0272 | 0.0272 | 0.0182 | 0.0182 | 0.011 | 0.00872 | 0.0131 | 0.0147 | 0.0089 | | | | <u> </u> | | | | | | | | | | | | | | | | | | | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 5 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 221 | 242 | 255 | 238 | 242 | 261 | | | Ammonia | NT 0.328 | 0.542 | 0.514 | 0.695 | 0.673 | 0.667 | | | Antimony | ND | | Arsenic | ND 0.0034 | ND | 0.0055 | ND | ND | 0.00907 | | | Barium | 0.1584 | 0.1513 | 0.1513 | 0.0797 | 0.043 | 0.1065 | 0.2328 | 0.2276 | 0.222 | 0.1991 | 0.2255 | 0.2468 | 0.261 | 0.254 | 0.255 | 0.264 | 0.255 | 0.281 | | | Beryllium | ND | | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | NT 154 | 160 | 159 | 154 | 157 | 173 | | | Chloride | NT 412 | 193 | 424 | 433 | 416 | 473 | | - | Chromium | ND | B04 | Cobalt | ND | 🛱 | COD | NT 26.3 | 25.2 | 29.8 | 30.7 | 29.2 | 34.1 | | 0 | Copper | ND | ND | 0.0121 | 0.0157 | 0.0254 | 0.0123 | 0.0316 | 0.0323 | 0.029 | 0.0088 | 0.0087 | 0.0311 | 0.0344 | 0.0388 | 0.0418 | 0.0367 | 0.0314 | 0.0377 | | 5 | Hardness | NT 670 | 610 | 680 | 717 | 705 | 714 | | Ė | Iron | NT | NT | NT | NT | NT | NT | ΝT | NT | NT | NT | NT | NT | 0.343 | 1.13 | 1.2 | ND | 0.92 | 0.804 | | ocation | Lead | ND | ND | ND | | ND | 0.0027 | ND | Ŏ | Magnesium | NT 75.1 | 83.7 | 81 | 88.1 | 89.1 | 88.9 | | <u> </u> | Manganese | 0.4449 | 0.215 | 0.6462 | 0.0306 | 0.7021 | 0.1073 | 1.2 | NT | NT | NT | NT | NT | 1.32 | 1.81 | 1.84 | 1.94 | 2.03 | 2.07 | | Monitoring | Mercury | ND | <u> </u> | Nickel | 0.009 | 0.0093 | 0.0112 | 0.0064 | 0.0146 | 0.0095 | 0.0091 | 0.0105 | 0.0102 | 0.0106 | 0.0118 | ND | 0.0137 | 0.0124 | 0.0145 | 0.0132 | 0.0115 | 0.0178 | | 유 | Nitrate | NT ND | ND | ND | ND | ND | ND | | <u> </u> | рН | NT | NT | NT | | | NT | | | | NT | NT | NT | 6.71 | 5.3 | | | 5.88 | | | ₽ | Potassium | NT | NT | NT | | NT | NT | NT | NT | NT | NT | | NT | 6.32 | 6.52 | 6.45 | 7.29 | 7.18 | 7.03 | | | Selenium | 0.0033 | 0.003 | 0.0056 | 0.0024 | 0.0032 | 0.0047 | 0.0033 | 0.0072 | 0.007 | 0.005 | 0.0058 | ND | 0.0167 | 0.0066 | 0.0219 | 0.0193 | 0.0144 | 0.032 | | | Silver | ND | ND | | ND | | ND | ND | ND | ND | ND | ND | | | | NT 71 | 77.6 | 73.8 | 74.4 | 74.3 | | | | Spec. Cond. | NT 1673 | 1758 | | | 1503 | 1817 | | | Sulfate | NT 18.8 | 21.1 | 28.4 | 19.6 | 22.3 | 19.5 | | | TDS | NT 1348 | 1772 | 1760 | 1428 | 1736 | 1632 | | | Thallium | ND | | Turbidity | NT 1.07 | 0.24 | 0.632 | 0.421 | NT | NT | | | Vanadium | ND | | Zinc | NT 0.007 | 0.0058 | 0.0167 | ND | 0.0138 | ND | 0.00761 | 0.00779 | 0.00828 | 0.00744 | 0.00692 | | | | • | - | | - | | | | - | | | - | | | - | | | | | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 6 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | , | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 |
Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 125 | 142 | 135 | 133 | 127 | 129 | | | Ammonia | NT 0.301 | 0.366 | 0.281 | 0.379 | 0.316 | 0.218 | | | Antimony | ND | | Arsenic | ND 0.0036 | ND | 0.0061 | 0.0053 | ND | 0.0105 | | | Barium | 0.0368 | 0.0406 | 0.0443 | 0.0447 | 0.1167 | 0.0408 | 0.0441 | 0.0432 | 0.0445 | 0.0453 | 0.049 | 0.0512 | 0.0542 | 0.0555 | 0.0539 | 0.0579 | 0.0555 | 0.0614 | | | Beryllium | ND | ND | ND | 1 | ND | ND | ND | | | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND | ND | | ND | ND | ND | | | | | | | ND | ND | ND | ND | ND | ND | | | Calcium | | | | | | NT | | | | | | NT | 109 | 116 | 113 | 117 | 118 | | | | Chloride | | NT | | | | NT | | | | | | NT | 438 | 311 | 468 | 473 | | | | < < | Chromium | ND | ND | | | ND | ND | 0.0022 | | 0.0026 | | ND | ND | 0.0021 | | ND | ND | ND | ND | | B04 | Cobalt | ND | ND | ND | | ND | ND | ND | | | | ND | | ND | ND | ND | ND | ND | ND | | ĕ | COD | | NT | NT | 1 | NT | NT | NT | | | | NT | NT | 31.3 | 26.4 | 29.5 | 39.3 | 27.5 | | | 0 | Copper | 0.0185 | 0.0262 | 0.0348 | 0.0339 | | 0.026 | 0.0248 | 0.0227 | 0.0261 | 0.03 | 0.027 | 0.0288 | 0.0328 | 0.0321 | 0.0324 | 0.0283 | 0.0236 | | | _ | Hardness | | | | 1 | NT | NT | | | | | NT | NT | 570 | 550 | 600 | 592 | 602 | | | [: | Iron | | | | | NT | NT | NT | | | | NT | NT | 0.998 | 1.57 | 1.24 | 0.636 | 0.712 | | | ocation | Lead | ND | ND | ND | | ND | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | Magnesium | | NT | NT | | NT | NT | NT | | | | | NT | 71.9 | 86.1 | 80.3 | 94.8 | 85.5 | | | | Manganese | 0.4973 | 0.6448 | 0.6915 | 0.6969 | 0.3169 | 0.6662 | 0.6592 | | | | NT | NT | 0.969 | 1.07 | 1.13 | 1.12 | 1.1 | | |
ნ | Mercury | ND | ND | ND | | ND | ND | ND | | ND | 0.0004 | | ND | 0.0003 | | ND | ND | ND | ND | | : <u>:</u> | Nickel | 0.0119 | 0.0138 | 0.0141 | 0.0149 | | 0.0142 | 0.0148 | 0.0152 | 0.0157 | 0.0164 | 0.0172 | 0.0159 | 0.021 | 0.0194 | 0.0207 | 0.0193 | 0.017 | 0.0234 | | 9 | Nitrate | NT | NT | <u> </u> | 1 | NT | NT | NT | | | | NT | | ND | ND | ND | ND | ND | ND | | iz | pH | | NT | | | NT | NT | NT | | | | NT | NT | 5.82 | 4.84 | | | 5.43 | 5.57 | | Monitoring | Potassium | NT | NT | NT | | NT | NT | NT | | | | | NT | 4.93 | 5.25 | 4.92 | 5.92 | 4.99 | | | 2 | Selenium | 0.0038 | 0.0035 | 0.007 | 0.0027 | 0.0032 | 0.0053 | 0.0032 | 0.0074 | 0.0085 | 0.0077 | 0.0064 | | 0.0174 | 0.0071 | 0.0243 | 0.0223 | 0.0161 | 0.0373 | | | Silver | ND | ND | ND | | ND | ND | ND | | ND | 0.0026 | | | ND 00.4 | ND | ND | ND | ND | ND 05 | | | Sodium | | NT | | 1 | | NT | NT | | | | | NT | 89.1 | 101 | 91.9 | 100 | 91.1 | 95 | | | Spec. Cond. | | NT | | | | NT | | | | | NT | NT | 1943 | 1678 | | | 1438 | 1702 | | | Sulfate | | | | | | NT | | | | | | NT | 12.1 | 12.9 | | | 11 | | | | TDS | | | | | | NT | | | | | | NT | 1200 | | _ | 1356 | 1636 | | | | Thallium | ND | ND | | | ND | ND | ND | | | | ND | | | | ND | | ND | ND | | | Turbidity | | NT | | | | NT | NT | | | | NT | NT | 10.3 | 16.8 | | | | NT | | | Vanadium | | ND | ND | | ND | ND | ND | | ND | | ND | | | ND | ND | ND | ND | ND | | | Zinc | NT 0.0166 | 0.017 | 0.0201 | 0.0273 | 0.0321 | 0.024 | 0.0227 | 0.0214 | 0.021 | 0.0204 | 0.0227 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 7 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Saming Spring S | Fall 2009 | | _ | l 50 | | _ | |--|-----------|-------------------|--------------|----------------|--------------|----------------| | | | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | Alkalinity NT | 150 | 170 | 220 | 145 | 156 | 175 | | Ammonia NT | ND | ND | ND | 0.389 | ND | ND | | Antimony ND ND ND ND 0.0033 ND ND 0.0034 ND ND ND ND ND | | Arsenic ND ND ND ND ND ND 0.003 0.0027 ND 0.0027 ND ND | 0.0032 | 2 ND | 0.0067 | 7 ND | ND | ND | | Barium 0.1657 0.1792 0.1979 0.2335 0.1901 0.2245 0.2017 0.195 0.4262 0.1607 0.17 0.194 | 0.196 | 0.267 | 0.507 | 0.536 | 0.195 | 0.221 | | Beryllium ND | | Cadmium ND ND ND ND ND ND NT NT NT NT NT | ND | ND | ND | ND | ND | ND | | Calcium NT | 148 | 3 147 | 126 | | | | | Chloride NT | 356 | 3 222 | 360 | | | | | Chromium ND ND ND ND ND ND 0.0104 ND 0.0768 ND ND 0.012 | 7 0.0021 | 0.021 | 0.127 | 0.0199 | | 0.0133 | | Cobalt 0.0032 0.0043 0.0043 0.0039 0.005 0.0047 0.0063 0.0049 0.0251 0.0052 ND COD NT | 0.0059 | 0.0111 | 0.0326 | 0.0101 | ND | 0.00694 | | COD NT | 68 | 55.1 | 31.5 | | | 44 | | | 7 0.0116 | 0.0327 | | | | 0.0309 | | Hardness NT | 580 | 560 | 550 | | | | | Hardness NT | 1.7 | 7 29.2 | 2 111 | 15.5 | 1.05 | 12.2 | | Lead ND ND ND ND 0.0028 ND 0.0048 ND 0.0491 ND ND ND | ND | 0.0126 | 0.0503 | 0.0474 | ND | 0.0081 | | Magnesium NT | 56.6 | 64.4 | 78.8 | | 55.9 | | | Manganese 0.2544 0.2995 0.3857 0.3813 0.4155 0.4181 0.4954 NT NT NT NT NT NT | 0.482 | 0.668 | | | 0.487 | 0.592 | | Mercury ND ND ND ND ND ND ND ND 0.0005 0.0003 ND ND | ND | 0.00286 | 0.00149 | 0.00852 | 0.00087 | 0.00054 | | Nickel 0.0086 0.0111 0.0118 0.0106 0.0126 0.0138 0.0204 0.0139 0.0805 0.0129 0.0129 0.0 | 2 0.0166 | 0.0349 | 0.131 | 0.0245 | 0.0112 | 0.0207 | | Mercury ND ND ND ND ND ND ND ND 0.0005 0.0003 ND ND Nickel 0.0086 0.0111 0.0118 0.0106 0.0126 0.0138 0.0204 0.0139 0.0805 0.0129 0.0129 0.0 Nitrate NT | 0.6869 | 0.6679 | 0.87 | 0.758 | 0.786 | 0.708 | | PH NT | 5.62 | 5.69 | 9 | | 5.51 | 5.76 | | Potassium NT | 4.82 | | | | | | | Selenium 0.0041 0.005 0.0061 0.006 0.0049 0.0118 0.0088 0.0094 ND 0.0095 0.0088 ND | 0.0147 | | | | 0.0122 | | | Silver ND ND ND ND NT ND ND ND ND ND ND | ND | 0.0088 | ND ND | ND | ND | ND | | Sodium NT | 83.3 | _ | 70.4 | 80.3 | | | | Spec. Cond. NT | 1564 | ¹ 1571 | | | 1289 | 1600 | | Sulfate NT | 82.9 | 85.1 | 81.7 | 85.7 | 93.7 | 76.8 | | TDS NT | 1116 | 1388 | 1784 | 1192 | 960 | 1156 | | Thallium ND | | Turbidity NT | 21.7 | 7 533 | 3329 | 3800 | NT | NT | | Vanadium ND ND ND ND ND 0.0069 ND 0.0724 ND ND ND | ND | 0.0204 | 0.133 | 0.0213 | ND | 0.0148 | | Zinc NT NT NT NT NT NT 0.036 0.2789 0.031 0.0321 0.0414 0.041 | 4 0.0321 | 0.116 | 0.372 | 0.0997 | 0.0213 | 0.0545 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 8 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 163 | 161 | 184 | 175 | 169 | 176 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | | Barium | 0.0507 | 0.0598 | 0.0815 | 0.0658 | 0.0831 | 0.0938 | 0.0172 | 0.0928 | 0.0903 | 0.0511 | 0.0406 | 0.0252 | 0.025 | 0.0414 | 0.0333 | 0.0256 | 0.0257 | 0.0261 | | | Beryllium | ND | ND | ND | | ND | ND | ND | | | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | | NT | NT | | | | | | | | | NT | 99.5 | 105 | 102 | 114 | 112.5 | 108 | | | Chloride | | NT | | NT | NT | NT | | NT | | | | NT | 150 | 48.8 | 171 | 193 | 194 | 199 | | | Chromium | | ND | | | | ND | | ND | 0.0034 | | | | | ND | ND | ND | | ND | | 0 | Cobalt | | ND | | | | ND | | | ND | | ND | | | ND | ND | ND | ND | ND | | OB07 | COD | | NT | | | NT | | | | | NT | | | ND | 13.6 | | 14 | 5.2 | | |
 Copper | | ND | 0.0108 | | 0.0129 | 0.005 | 0.0057 | 0.0053 | 0.0137 | 0.0033 | | ND | 0.0062 | 0.0126 | 0.0132 | | ND | 0.00909 | | | Hardness | | | | | | | | | | | NT | NT | 331 | 350 | 360 | 407 | 409 | | | | Iron | | | | | | | | NT | | | | NT | 0.262 | 1.07 | 2.14 | 1.08 | 0.659 | | | ocation | Lead | ND | ND | | | | ND | | ND | | | | | ND | ND | ND | ND | ND | ND | | 9 | Magnesium | | NT | | | | NT | | | | | | NT | 26.1 | 29.7 | 28.5 | 35.2 | 34.8 | 33.6 | |] | Manganese | | ND | 0.0043 | 0.0038 | 0.0232 | 0.0772 | | | | | | NT | 0.0317 | 0.281 | 0.221 | 0.0338 | 0.0369 | 0.113 | |) ù | Mercury | | ND | ND | | ND | ND | 0.0003 | | ND | | ND | ND | ND | ND | 0.00028 | 0.00049 | 0.00031 | 0.00029 | | i ž | Nickel | | ND | | | ND | 0.0022 | | 0.0024 | 0.0056 | | ND | ND | 0.0047 | 0.0057 | ND | ND | ND | ND | | 13 | Nitrate | | | | | | | | | | | | NT | 0.5482 | 0.5966 | 0.658 | 0.861 | 0.819 | 0.8232 | | Monitoring | pН | | | | | | | | | | | NT | NT | 7.04 | 5.95 | | | 6.34 | 6.55 | | | Potassium | | NT | | | | | | | | | | NT | 3.07 | 3.23 | 3.13 | 3.24 | 3.42 | 3.4 | | | Selenium | | ND | | | ND | 0.0042 | | 0.0029 | 0.0054 | 0.0028 | | ND | 0.0044 | | 0.0058 | 0.0071 | 0.00658 | | | | Silver | | ND | | | | ND | | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Sodium | NT 21.4 | 23.3 | 21.9 | 21.3 | 20.8 | 24.5 | | | Spec. Cond. | NT 760 | 828.1 | | | 806.2 | 937.2 | | | Sulfate | NT 13.4 | 15.2 | 19.2 | 20.4 | 21 | 20.2 | | | TDS | NT 644 | 764 | 1068 | 800 | 984 | 708 | | | Thallium | ND | ND | | ND | | ND | | | ND | | | Turbidity | NT 0.283 | 14.3 | 40.7 | 0.939 | NT | NT | | | Vanadium | ND | ND | | ND | | Zinc | NT | NT | NT | NT | NT | NT | 0.0075 | 0.023 | ND | ND | ND | ND | ND | 0.0126 | 0.0112 | ND | 0.00576 | 0.00575 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 9 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u> </u> | _ | | | | | | |-------------|--------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|-----------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 124 | 92 | 115 | 112 | 115 | 122 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | | Barium | 0.0469 | 0.0439 | 0.0248 | 0.0529 | 0.027 | 0.0616 | 0.0265 | 0.0313 | 0.0506 | 0.0643 | 0.0864 | 0.0419 | 0.0431 | 0.0693 | 0.037 | 0.0401 | 0.0432 | 0.0405 | | | Beryllium | ND | ND | ND | | | ND | ND | | | ND | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND | ND | | | | ND | | | | | | | ND | ND | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | NT | 91.8 | 55.8 | 72 | 86.5 | 90 | | | | Chloride | | NT | | | | | | | | | | NT | 235 | 74.5 | | 216 | | | | ∢ | Chromium | ND | ND | | | | ND | | | ND | | ND | | ND | | ND | ND | ND | ND | | B07 | Cobalt | | ND | ND | | | ND | | ND | 0.0025 | | ND | | ND | 0.0059 | | ND | ND | ND | | M M | COD | | NT | NT | | | NT | | | | | | NT | 17.8 | 6.1 | 9.7 | 16.5 | 10 | | | 0 | Copper | | ND | 0.0153 | 0.0138 | | 0.0114 | 0.0051 | 0.0055 | 0.0113 | 0.0092 | | ND | 0.0058 | 0.0128 | 0.0078 | | ND | 0.00594 | | Ĕ | Hardness | | | | | | | | | | | NT | NT | 420 | 205 | 350 | 390 | 424 | 408 | | [: | Iron | | | | | | | | | | | | NT | 0.239 | | 0.5 | 0.819 | 0.538 | | | ocation | Lead | ND | ND | ND | | ND | | | | | | | | ND | | ND | ND | ND | ND | | | Magnesium | | NT | | | | NT | | | | | | NT | 51.2 | 21.7 | 41.6 | 49.3 | 52.5 | 48.3 | | | Manganese | 0.0904 | 0.3046 | 0.0437 | 0.0237 | 0.2041 | 0.1168 | | | | | NT | NT | 0.0592 | 0.753 | 0.0954 | 0.07 | 0.0716 | | | _ | Mercury | 0.0003 | 0.0004 | 0.0003 | 0.0003 | | ND | 0.0009 | 0.0007 | 0.0005 | 0.0005 | 0.0004 | 0.0009 | 0.001 | 0.00026 | 0.00047 | 0.00075 | 0.00056 | | | ·Ē | Nickel | 0.0043 | 0.0047 | 0.0024 | 0.0025 | 0.0037 | 0.0044 | 0.0023 | 0.0039 | 0.0059 | 0.0043 | | ND | 0.006 | 0.0099 | | ND | ND | ND | | 유 | Nitrate | NT | NT | | | | | NT | | | NT | NT | NT | | ND 5.04 | 0.9 | 0.902 | 0.891 | 0.97 | | i <u>ē</u> | pH | | | | | | | | | | | NT | NT | 6.51 | 5.94 | 0.50 | 0.0 | 5.6 | | | ₽ | Potassium | | NT
ND | | | NT
ND | | | | NT
0.0044 | | | NT | 2.66 | 7.32 | 2.56 | 2.3
0.0095 | 2.44
0.00935 | _ | | = | Selenium
Silver | | ND
ND | 0.0022
ND | | | 0.0042
ND | | 0.0034 | | 0.0032
ND | ND
ND | ND
ND | 0.0083
ND | ND
ND | 0.0064
ND | 0.0095
ND | 0.00935
ND | 0.00589
ND | | | Sodium | | NT | | | | | | | ND
NT | | | NT | 30.2 | 23.8 | 26.1 | 25.6 | 26.3 | 28.6 | | | Spec. Cond. | | | | | | | | | | | | | 706.7 | | 20.1 | 23.0 | 860.9 | | | | Sulfate | | NT
NT | | | | | | | | | NT
NT | NT
NT | 22.4 | 565.4
3.38 | 21.6 | 22.6 | 28 | 994.7
24.3 | | | TDS | | | | | | | | | | | | NT | 784 | 3.36
492 | | 796 | | | | | Thallium | ND | ND | | | | ND | | | | | | | | _ | 1176
ND | | | ND | | | Turbidity | | NT | | | | | | | | | | NT | 0.317 | 6.85 | | 0.579 | | NT | | | Vanadium | | ND | ND | | | ND | ND | | | | ND | | | | ND | 0.579
ND | ND | ND | | | Zinc | | NT | NT | | | | NT | 0.0065 | 0.0086 | | ND
ND | | ND
ND | 0.0136 | 0.0079 | 0.00516 | | ND
ND | | | ZITIC | INI 0.0005 | 0.0000 | טאו | טאו | טאו | טאו | 0.0136 | 0.0079 | 0.00516 | טאו | טאו | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 10 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 229 | 245 | 248 | 230 | 230 | 239 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | NT | ND | | Barium | NT | 0.0158 | 0.0137 | 0.0102 | 0.0159 | 0.0114 | 0.1281 | 0.1163 | 0.1146 | 0.0822 | 0.0288 | 0.1309 | 0.137 | 0.126 | 0.118 | 0.116 | 0.128 | 0.129 | | | Beryllium | | ND | ND | | ND | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | NT | ND | | | ND | ND | | NT | NT | | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | | NT | NT | NT | | NT | | NT | NT | | NT | NT | 63.5 | 71.1 | 65.9 | 62.7 | 67.1 | 70.8 | | | Chloride | | NT | | NT | NT | NT | | | NT | | NT | NT | 34.7 | 31.2 | 32.8 | 34.2 | 46.1 | 42.8 | | l | Chromium | NT | ND | | | | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | B08 | | | ND | ND | | | ND | 0.0084 | 0.0078 | 0.0069 | | ND | ND | 0.0052 | 0.0064 | 0.0064 | 0.007 | 0.00803 | 0.00789 | | OB | | | NT | NT | | | NT | NT | | NT | NT | NT | | ND | 4.9 | | ND | ND | 9.9 | | | Copper | | ND | 0.0126 | 0.0107 | 0.0172 | 0.0073 | 0.0062 | 0.006 | 0.0061 | 0.0045 | | ND | 0.0043 | 0.0073 | 0.006 | 0.006 | | ND | | l o | Hardness | | | | | | NT | | | NT | | NT | NT | 228 | 250 | 300 | 265 | 144 | | | Ė | Iron | | | | | NT | NT | | | NT | | NT | NT | 0.301 | 0.675 | 0.647 | 0.718 | 0.797 | 0.74 | | ocation | Lead | NT | ND | ND | ND | | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | Magnesium | 5.08 | 5.08 | 5.08 | 5.08 | | 5.08 | 5.08 | 5.08 | | | | 5.08 | 12.9 | 16.6 | 14.9 | 17 | 16.8 | | | 16 | | NT | 0.2364 | 0.0976 | 0.0716 | | 0.2417 | | | | NT | NT | NT | 6.29 | 7.07 | 7.18 | 6.56 | 7.228 | 0.0 | |) L | , | | ND | ND | | ND | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | |)ri | | | ND | ND | ND | 0.0028 | 0.0021 | 0.0081 | 0.0089 | 0.0082 | | ND | ND | 0.0083 | 0.0081 | 0.0083 | 0.0077 | 0.0085 | 0.00877 | | Monitoring | Nitrate | | | | | | NT | | | NT | | NT | | ND | ND | ND | ND | ND | ND | | l uc | pH | | | | | | NT | | | NT | | NT | NT | 7.04 | 5.41 | | | 5.85 | 6.22 | | ĕ | Potassium | | NT | | | | NT | | | NT | | NT | NT | 2.81 | 2.87 | 2.63 | 2.91 | 2.86 | | | - | Selenium | | ND | | | | ND | | | ND | | ND | | | ND | ND | ND | ND | ND | | | Silver | | ND | ND | | | ND | | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | | | NT | | | | NT | | | | | NT | NT | 27.2 | 31.6 | 28 | 28.7 | 27.4 | 28 | | | Spec. Cond. | | NT | | | | NT | | | | | NT | NT | 523.1 | 528.2 | | | 476.3 | 559.9 | | | Sulfate | | | | | | NT | | | NT | | NT | NT | 7.54 | 4.91 | 4.83 | | ND | 4.76 | | | TDS | | | | | | NT | | | NT | | NT | NT | 284 | | 384 | 280 | | | | | Thallium | ND | ND | | | | ND | | | ND | | ND | | | | ND | | | ND | | | Turbidity | | NT | | | | NT | | | NT | | NT | NT | 0.266 | | 0.485 | 0.735 | | NT | | | Vanadium | | ND | ND | | | ND | ND | | ND | | ND | | | | ND | ND | ND | ND | | | Zinc | NT | NT | NT | NT | NT | NT | 0.0057 | 0.0039 | 0.0048 | ND | ND | ND | ND | ND | ND | 0.00765 | 0.00658 | 0.00607 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 11 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u> </u> | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------
----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 228 | 233 | 226 | 220 | 218 | 221 | | | Ammonia | NT ND | 0.299 | ND | ND | ND | ND | | | Antimony | NT | ND | | Arsenic | NT | ND | ND | ND | ND | ND | 0.0026 | 0.003 | 0.0022 | ND | ND | ND | 0.0023 | ND | ND | ND | ND | ND | | | Barium | NT | 0.0049 | 0.0059 | 0.0057 | 0.0101 | 0.0087 | 0.0974 | 0.1007 | 0.082 | 0.0894 | ND | 0.0669 | 0.0815 | 0.0919 | 0.0779 | 0.099 | 0.0689 | 0.0735 | | | Beryllium | NT | ND | ND | | ND | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | NT | | | | ND | ND | | NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | | NT | NT | NT | NT | NT | | | | NT | NT | NT | 59.4 | 52.6 | 52.9 | 58.1 | 54.4 | 53.3 | | | Chloride | | NT | | NT | NT | NT | | | | | NT | NT | 67.4 | 39.9 | | 45.4 | 63.3 | 55.5 | | < < | Chromium | NT | ND | | | | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | ND | ND | | B08, | | | ND | | | | ND | 0.0184 | 0.0171 | 0.0177 | | ND | 0.0167 | 0.0186 | 0.0135 | 0.0175 | 0.0146 | 0.0173 | 0.0171 | | B(| | | | NT | | | NT | NT | | | NT | | NT | ND | 39.2 | 5.3 | | ND | 8.6 | | 0 | Copper | | ND | 0.0102 | 0.0127 | 0.0104 | 0.0078 | 0.0083 | 0.0059 | 0.0058 | 0.0041 | 0.0061 | ND | 0.0051 | 0.0067 | 0.0061 | 0.006 | | 0.00802 | | <u>_</u> | Hardness | | | | | | NT | | | | | NT | NT | 570 | 330 | 300 | 370 | 190 | | | <u>:</u> | Iron | | | | | | NT | | | | | | NT | 3.85 | 3.33 | 3.35 | 3.69 | 3.05 | | | ocation | Lead | NT | ND | | | | ND | | | | | ND | | ND | | ND | ND | ND | ND | | | Magnesium | | NT | | | | NT | | | | | | NT | 23.2 | 19.2 | 19.3 | 20.3 | 22 | | | | Manganese | NT | 0.2168 | 0.0206 | 0.0218 | | 0.2202 | | | | | NT | NT | 8.16 | 7.9 | | 8.57 | 7.484 | | | ე | Mercury | | ND | ND | | ND | ND | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | ÷ | Nickel | | ND | | ND | 0.0021 | 0.0026 | 0.0106 | 0.0088 | 0.0083 | 0.0054 | | ND | 0.0095 | 0.0068 | 0.0079 | 0.0071 | 0.00745 | 0.00751 | | Monitoring | Nitrate | | | | | NT | NT | NT | | | | NT | | ND | ND | ND | ND | ND | ND | |] <u>-</u> | pН | | | | | | NT | | | | | | NT | 6.65 | 5.49 | | | 5.96 | | | | Potassium | | | | | | NT | | | | | | NT | 2.82 | 2.73 | 2.52 | 2.77 | 2.8 | | | ≥ | Selenium | | | | | | ND | | | | | | | | ND | ND | ND | ND | ND | | | Silver | | ND | | | | ND | | | | | ND | | ND | | ND | ND | ND | ND | | | | | | | | | NT | | | NT | NT | NT | NT | 37 | 34.7 | 31.7 | 30.8 | 31.8 | | | | Spec. Cond. | NT | NT | | | | NT | | | | | NT | NT | 579.9 | 541.9 | | | 502.5 | 579.1 | | | Sulfate | NT | | | | | NT | | | | | | NT | 3.85 | 3.04 | 5.74 | | ND | ND | | | TDS | | | | | NT | NT | | NT | NT | NT | NT | NT | 352 | 336 | | 340 | 1240 | 364 | | | Thallium | NT | | | | | ND | | | | | ND | | | | ND | | ND | ND | | | Turbidity | | | | | | NT | | | | | | NT | 1.69 | | | 1.36 | | NT | | | Vanadium | | ND | | | | ND | ND | | | | ND | | | | ND | ND | ND | ND | | | Zinc | NT | NT | NT | NT | NT | NT | 0.0083 | 0.0051 | 0.0045 | ND | ND | ND | ND | ND | ND | 0.0078 | 0.00676 | 0.0101 | Note: MCL exceedances are indicated in Red Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | _ | | | | | | | | <u></u> | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 110 | 83 | 134 | 116 | 122 | 119 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | ND | ND | ND | ND | ND | 0.004 | ND | | Barium | 0.0413 | 0.0436 | 0.0425 | 0.0375 | 0.0379 | 0.03 | 0.0778 | 0.0366 | 0.0491 | 0.0321 | 0.0416 | 0.0401 | 0.0468 | 0.049 | 0.0553 | 0.0531 | 0.0534 | 0.0569 | | | Beryllium | ND | | Cadmium | ND NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | | Calcium | NT 38.6 | 37.7 | 43.4 | 39.8 | 45.8 | | | | Chloride | NT 82.4 | 53.3 | 83.6 | 89 | 94.1 | 100 | | | Chromium | ND | ND | ND | | | ND | B10 | Cobalt | 0.0027 | 0.0036 | 0.0035 | 0.0026 | 0.0029 | ND | 0.0035 | | 0.0041 | 0.0022 | ND | ND | 0.0029 | ND | 0.0059 | | ND | 0.00519 | | | COD | NT | NT | NT | | NT | NT | NT | NT | | NT | NT | NT | ND | 7.5 | 10.3 | ND | ND | 7.5 | | 0 | Copper | | ND | 0.0132 | | ND | 0.008 | 0.0083 | 0.0079 | 0.0082 | 0.0041 | 0.0066 | 0.0063 | 0.006 | 0.0179 | 0.0057 | | ND | ND | | ocation | Hardness | | | | | | NT | NT | | NT | | NT | NT | 160 | 161 | 230 | 230 | 226 | | | 🚊 | Iron | | | | | | NT | | | | | NT | NT | 0.598 | 1.9 | 1.28 | 0.783 | 1.12 | | | 8 | Lead | ND | ND | | | | ND | 0.0021 | | 0.0031 | | ND | | ND | 0.0085 | ND | ND | ND | ND | | 9 | Magnesium | | NT | | | | NT | NT | | | | NT | NT | 19.4 | 18.1 | 24 | 24.9 | 27.8 | | | | Manganese | 2.03 | 20.38 | 2.248 | 1.9194 | 2.04 | | 2.376 | | | | NT | NT | 2.63 | 1.31 | 3.47 | 2.68 | 3.03 | | | Monitoring | Mercury | ND | ND | ND | | | ND | ND | | ND | | ND | i Ż | Nickel | 0.0049 | 0.0056 | 0.0074 | 0.0048 | | 0.0056 | 0.008 | 0.0057 | 0.0066 | 0.0049 | 0.0061 | 0.0049 | 0.0079 | 0.0104 | 0.0079 | 0.0063 | 0.00682 | | | <u>;</u> | Nitrate | NT | NT | | | | NT | | | | | NT | | ND | ND | 0.008 | ND | ND | ND | | <u> </u> | рН | | | | | | NT | | | | | NT | NT | 6.3 | 5.98 | | | 5.8 | | | ĕ | Potassium | | | | | | NT | | | | | NT | NT | 2.81 | 2.94 | 2.65 | | 3 | | | _ | Selenium | ND | ND | ND | | | ND | | | | | ND | | | | ND | | | ND | | | Silver | ND | ND | ND | | | ND | | | | | ND | | ND | | ND | ND | ND | ND | | | | NT | NT | - | | | NT | | | NT | NT | NT | NT | 19 | 20.3 | 20.3 | 18.4 | 19.6 | | | | Spec. Cond. | NT | NT | | | | NT | | | | | NT | NT | 413.6 | 423.9 | | | 446.8 | 011.0 | | | Sulfate | NT | NT | | NT | NT | NT | | | | | NT | NT | 1.7 | | ND | ND | ND | ND | | | TDS | NT | NT | | NT | | NT | NT | | | NT | NT | NT | 368 | 364 | 552 | 456 | 492 | 480 | | | Thallium | ND | ND | ND | | | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Turbidity | | NT | | | | NT | NT | | | | NT | NT | 2.09 | 21.1 | 1.16 | 0.443 | NT | NT | | | Vanadium | ND | ND | ND | | | ND | ND | ND | ND | | ND | | ND | ND | ND | ND | ND | ND | | | Zinc | NT 0.023 | 0.0198 | 0.0087 | ND | 0.0107 | ND | 0.0226 | 0.00595 | 0.00573 | 0.00698 | 0.00662 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 13 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | , | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 1140 | 960 | 1100 | 1008 | 1000 | 1056 | | | Ammonia | NT 11.2 | 12.4 | 8.98 | 11.1 | 11.1 | 11.6 | | | Antimony | ND | | Arsenic | ND | ND | ND | ND | ND | 0.0042 | 0.0061 | 0.0057 | 0.0196 | 0.0063 | 0.0061 | ND | 0.0065 | ND | 0.0068 | 0.0061 | 0.00581 | ND | | | Barium | 0.0818 | 0.1215 | 0.2291 | 0.3498 | 0.3393 | 0.3277 | 0.3264 | 0.3338 | 0.7682 | 0.3156 | 0.3331 | 0.4215 | 0.385 | 0.374 | 0.342 | 0.349 | 0.344 | 0.355 | | | Beryllium | ND 0.008 | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND | | | | ND | ND | | | NT | NT | NT | NT | 0.0021 | ND | ND | ND | ND | ND | | | Calcium | | NT | NT | | | | | | NT | | NT | NT | 116 | 113 | 114 | 124 | 119.7 | 115 | | | Chloride | NT | NT | | NT 560 | 128 | 577 | 578 | 564 | | | 02 | Chromium | ND | ND | ND | 0.0024 | 0.0043 | 0.0029 | 0.0026 | 0.0035 | 0.1373 | 0.0033 | | ND | 0.0105 | 0.0102 | | ND | ND | ND | | 1 1 | Cobalt | 0.0947 | 0.0145 | 0.1029 | 0.0991 | 0.1041 | 0.0894 | 0.1094 | 0.0873 | 0.2586 | 0.0821 | 0.0876 | 0.085 | 0.0925 | 0.089 | 0.0842 | 0.0764 | 0.0724 | 0.0734 | | <u>m</u> | COD | NT | NT | NT | | NT | NT | NT | | NT | | NT | NT | 262 | 250 | 252 | 235 | 237 | 227 | | 0 | Copper | ND | 0.0228 | 0.0248 | 0.0384 | 0.211 | 0.0543 | 0.0437 | 0.0557 | 1.8022 | 0.0638 | 0.088 | 0.1301 | 0.136 | 0.0793 | 0.0908 | 0.0483 | 0.0449 | | | l E | Hardness | | | | | NT | | NT | | NT | | NT | NT | 810 | 158 | 900 | 775 | 701 | 640 | | <u>;</u> ; | Iron | | | | | NT | | | | NT | | NT | NT | 8.95 | 9.66 | 3.55 | 1.69 | 0.798 | | | ocation | Lead | ND | ND | 0.0026 | | 0.0046 | 0.0022 | | ND | | ND | 0.0055 | | 0.0043 | | ND | ND | ND | ND | | ŏ | Magnesium | | | | | | | | | NT | | NT | NT | 94.8 | 98.7 | 94.3 | 102 | 98.4 | 97.4 | | | Manganese | 4.083 | 6.425 | 17.25 | 25.835 | 24.56 | | | | NT | | NT | NT | 22.2 | 20.7 | 21.8 | 23.5 | 20.9 | | | ا ور ا | Mercury | ND | ND | ND | | ND | ND | ND | ND | 0.0006 | | ND | | ND | ND | ND | ND | ND | ND | | <u>:</u> | Nickel | 0.0052 | 0.023 | 0.0362 | 0.09 |
 0.0913 | 0.087 | 0.0942 | 0.2651 | 0.0908 | 0.0871 | 0.1029 | 0.118 | 0.0966 | 0.101 | 0.092 | 0.0909 | | | Monitoring | Nitrate | | NT | | | | | NT | | NT | NT | NT | | ND | ND | ND | ND | ND | ND | | l ï | pН | | | | | | | | | NT | | NT | NT | 6.26 | 5.95 | | | 6.42 | 6.64 | | • | Potassium | | NT | | | | NT | NT | | NT | | NT | NT | 37.2 | 41.7 | 37.8 | 39.8 | 40.4 | | | 2 | Selenium | ND | 0.0026 | 0.0071 | 0.0092 | 0.0093 | 0.0127 | 0.0185 | 0.0179 | | 0.0186 | 0.0152 | 0.0167 | 0.0256 | 0.0134 | 0.0256 | 0.0237 | 0.0224 | 0.017 | | | Silver | | ND | ND | | ND | | NT | | ND | | Sodium | | | | | | | | | | | NT | NT | 613 | 549 | 500 | 561 | 550 | | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 3522 | 3493 | | | 3010 | 0000 | | | Sulfate | | | | | | | | | NT | | NT | NT | 71.9 | 71.5 | _ | 74.3 | 74.4 | | | | TDS | | | | | | | | | NT | | NT | NT | 2120 | 2172 | 2252 | 2308 | 2244 | | | | Thallium | ND | ND | | | | ND | | ND | 0.0087 | | ND | | ND | | ND | | ND | ND | | | Turbidity | | | | | | | | | NT | | NT | NT | 191 | 202 | | 23.7 | | NT | | | Vanadium | | ND | | ND | 0.0047 | | ND | 0.003 | 0.1443 | | 0.0105 | | 0.0104 | 0.0124 | | ND | ND | ND | | | Zinc | NT 0.021 | 1.254 | 0.0248 | 0.0424 | 0.0776 | 0.0464 | 0.0402 | 0.0224 | 0.0135 | 0.0127 | 0.013 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 14 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 810 | 1710 | 600 | 728 | 494 | 51 | | | Ammonia | NT 12.4 | 61.8 | 5.02 | 25.1 | 4.4 | 16.3 | | | Antimony | ND | | Arsenic | ND | 0.005 | ND | 0.007 | 0.0023 | 0.0058 | 0.0027 | 0.0041 | 0.0057 | 0.0064 | 0.0044 | ND | 0.012 | 0.005 | 0.0109 | ND | ND | 0.0147 | | | Barium | 0.1666 | 0.2607 | 0.1224 | 0.512 | 0.2067 | 0.2254 | 0.208 | 0.2161 | 0.166 | 0.256 | 0.1682 | 0.466 | 0.304 | 0.408 | 0.258 | 0.218 | 0.157 | 0.601 | | | Beryllium | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | 0.0026 | | ND | ND | ND | 0.0112 | | | Cadmium | ND | ND | ND | ND | ND | 0.0079 | 0.0125 | NT | NT | NT | NT | NT | 0.0047 | ND | ND | ND | ND | 0.0109 | | | Calcium | NT | NT | NT | NT | NT | NT | | NT | NT | NT | NT | NT | 156 | 124 | 165 | 92.2 | 170 | | | | Chloride | NT 328 | 265 | 334 | 219 | 309 | 356 | | 2 | Chromium | 0.0025 | 0.0028 | 0.0026 | 0.0051 | 0.0027 | 0.0028 | 0.0024 | ND | 0.0057 | 0.0044 | ND | ND | 0.0717 | 0.0075 | 0.0808 | 0.0106 | 0.0184 | 0.166 | | 10 | Cobalt | 0.0051 | 0.0173 | 0.0045 | 0.0146 | 0.007 | 0.0077 | 0.0054 | 0.0073 | 0.0116 | 0.012 | 0.0077 | 0.0108 | 0.101 | 0.0129 | 0.196 | 0.0202 | 0.0345 | | |) M | COD | NT 173 | 258 | 207 | 92.4 | 83.4 | | | 0 | Copper | 0.0416 | ND | 0.013 | 0.0156 | 0.0654 | 0.0148 | 0.0103 | 0.0094 | 0.0217 | 0.0184 | 0.012 | 0.0134 | 0.112 | 0.0218 | 0.173 | 0.0277 | 0.0237 | 0.293 | | ב | Hardness | | | | | NT | NT | NT | | NT | | NT | NT | 900 | 870 | 950 | 576 | 866 | | | ∷ | Iron | | NT | | | NT | NT | | NT | NT | | NT | NT | 85.3 | 31.2 | 110 | 17.1 | 19.96 | | | ocation | Lead | ND | | | ND | 0.0033 | 0.0033 | | ND | 0.0033 | | ND | ND | | ND | 0.0332 | | 0.015 | | | 6 | Magnesium | | NT | | | | NT | | | NT | | NT | NT | 129 | 152 | 132 | 96.5 | 132 | | | | Manganese | 1.85 | 2.046 | 1.112 | 2.1005 | _ | ND | | | NT | | NT | NT | 3.58 | 1.97 | 3.76 | 1.68 | 2.66 | | |) gr | Mercury | ND | ND | ND | | ND | ND | ND | ND | 0.0004 | | ND | ND | | ND | 0.003 | 0.00026 | 0.00101 | 0.00645 | | : | Nickel | 0.0092 | 0.0137 | 0.0088 | 0.0145 | | 0.0111 | 0.0103 | 0.0091 | 0.02 | 0.0142 | 0.0143 | 0.0116 | 0.174 | 0.0164 | 0.228 | 0.0258 | 0.053 | 0.283 | | Monitoring | Nitrate | NT | NT | | | | NT | NT | | NT | | NT | | ND | ND | ND | 0.99 | | ND | | _ <u>:</u> | pН | | NT | | | | NT | | | NT | | NT | NT | 6.81 | 6.33 | | | 6.18 | | | 잍 | Potassium | NT | NT | | | | NT | NT | | NT | | NT | NT | 35.7 | 136 | 19.3 | 61.3 | 15 | | | 2 | Selenium | 0.0051 | 0.0049 | 0.0036 | 0.007 | 0.0044 | 0.0135 | 0.004 | 0.0087 | 0.012 | 0.0119 | | 0.013 | 0.0193 | 0.0091 | 0.0214 | 0.0102 | 0.00977 | | | | Silver | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Sodium | NT 286 | 468 | 174 | 202 | 183.57 | 226 | | | Spec. Cond. | NT 3384 | 3886 | | | 1963 | 3025 | | | Sulfate | NT 346 | 105 | 309 | | 314 | | | | TDS | NT | NT | | | NT | NT | | NT | NT | NT | NT | NT | 1736 | | 1876 | 1320 | 1872 | 1776 | | | Thallium | ND | ND | | | | ND | | | ND | | ND | | | | ND | | | ND | | | Turbidity | NT | NT | | NT | | NT | | NT | NT | | NT | NT | 1215 | 338 | 3430 | 240 | NT | NT | | | Vanadium | 0.0034 | 0.0038 | 0.0032 | 0.006 | | 0.0023 | | ND | 0.0077 | 0.0042 | | ND | 0.0789 | 0.0096 | 0.136 | 0.0194 | 0.0331 | 0.363 | | | Zinc | NT 0.0175 | 0.0799 | 0.1131 | 0.0352 | 0.0501 | 0.556 | 0.031 | 0.765 | 0.153 | 0.15 | 0.975 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 15 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 201 | 165 | 200 | 211 | 215 | 217 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | ND | ND | 0.0055 | ND | ND | ND | 0.0021 | ND | 0.0024 | ND | | Barium | 0.0334 | 0.2086 | 0.0803 | 0.1537 | 0.0559 | 0.0535 | 0.0229 | 0.0258 | 0.032 | 0.0267 | 0.0331 | 0.0286 | 0.0272 | 0.0515 | 0.0261 | 0.0301 | 0.0292 | 0.0295 | | | Beryllium | ND | | Cadmium | 0.0051 | 0.0034 | 0.0081 | 0.0036 | 0.0023 | 0.0056 | 0.0099 | NT | NT | NT | NT | NT | 0.0088 | 0.0058 | 0.009 | 0.01 | 0.0101 | 0.0104 | | | Calcium | NT 126 | 108 | 133 | 134 | 132.3 | | | | Chloride | NT 330 | 393 | 358 | 259 | 371 | 407 | | _ | Chromium | ND | ND | 0.0023 | ND | ND | ND | 0.0027 | ND | 0.0037 | ND | B1, | Cobalt | 0.0025 | 0.0613 | 0.0027 | | | ND | ND | ND | 0.0036 | | ND | | ND | ND | ND | ND | ND | ND | | | COD | NT | NT | NT | NT | NT | | | NT | NT | NT | NT | NT | 27.5 | 28.2 | 29 | 32.5 | 22.4 | 32.8 | | 0 | Copper | | ND | 0.0135 | 0.0164 | 0.0112 | 0.009 | 0.0091 | 0.0083 | 0.0069 | 0.0063 | 0.0062 | ND | 0.0083 | 0.0072 | 0.0112 | 0.0078 | 0.0064 | | | | Hardness | | | | | | | | | | NT | NT | NT | 550 | 510 | 600 | 563 | 581 | 596 | | Ė | Iron | | NT | NT | | NT | | | NT | | NT | | NT | 0.454 | 0.84 | | 1.27 | 0.738 | | | ocation | Lead | ND | ND | 0.0074 | 0.0028 | 0.0026 | 0.0023 | | | | ND | ND | | ND | ND | ND | ND | ND | ND | | 9 | Magnesium | | NT | NT | | NT | NT | | | | NT | | NT | 60.1 | 59.1 | 67.9 | 66.6 | 66.6 | | |] L | Manganese | 0.5659 | | 0.7036 | 5.365 | 0.6313 | 0.5976 | 0.8841 | NT | | NT | NT | NT | 0.862 | 0.7 | 0.884 | 0.869 | 0.768 | | | ľ | Mercury | ND | ND | 0.0005 | 0.0004 | 0.0008 | 0.0019 | 0.003 | 0.0031 | 0.0007 | 0.0022 | 0.0005 | 0.0019 | 0.0022 | 0.00191 | 0.00254 | 0.00165 | 0.00102 | 0.00098 | | Ë | Nickel | 0.0137 | 0.0354 | 0.0167 | 0.0382 | 0.0176 | 0.0178 | 0.0292 | 0.0279 | 0.0276 | 0.0249 | 0.0207 | 0.0275 | 0.0361 | 0.0216 | 0.0375 | 0.0331 | 0.0333 | 0.0339 | | Monitoring | Nitrate | NT | NT | | | | NT | NT | | | NT | NT | | ND | ND | ND | ND | ND | ND | | ľ | рН | | | | | | | | | | NT | NT | NT | 5.69 | 5.03 | | | 5.35 | 5.41 | | | Potassium | | NT | | | | | | | | NT | | NT | 4.56 | 8.25 | 4.9 | 4.82 | 4.7 | | | | Selenium | | ND | ND | | | ND | ND | 0.0036 | | 0.0029 | | ND | 0.0049 | | 0.0078 | 0.0061 | 0.00568 | | | | Silver | | ND | | | | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Sodium | NT 56.7 | 59.9 | 68.8 | 67.9 | 68.5 | | | | Spec. Cond. | NT 1339 | 1340 | | | 1302 | 1559 | | | Sulfate | NT 8.96 | 8.47 | 9.53 | 9.48 | 10.2 | 11.2 | | | TDS | NT | NT | | | NT | NT | | NT | NT | NT | NT | NT | 1208 | 1152 | | 1116 | 1036 | 1404 | | | Thallium | ND | ND | ND | ND | | ND | | ND | | ND | ND | | | Turbidity | Nt | Nt | | Nt 1.16 | 3.65 | | 0.733 | NT | NT | | | Vanadium | | ND | ND | | | ND | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | | Zinc | NT | NT | NT | NT | NT | NT | 0.0389 | 0.04 | 0.0427 | 0.038 | 0.0508 | 0.0508 | 0.0432 | 0.0309 | 0.0426 | 0.043 | 0.042 | 0.0453 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 16 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------
----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | NT 270 | 282 | 280 | 292 | 285 | 279 | | | Ammonia | NT 0.222 | 0.817 | 1.7 | 2.11 | 1.59 | 1.11 | | | Antimony | ND | | Arsenic | ND | ND | 0.0087 | ND | 0.0027 | ND | ND | ND | 0.0072 | 0.0031 | ND | | Barium | 0.1753 | 0.0733 | 0.2284 | 0.0603 | 0.1653 | 0.1678 | 0.1785 | 0.1767 | 0.1365 | 0.1441 | 0.1335 | 0.1616 | 0.151 | 0.174 | 0.182 | 0.957 | 0.166 | 0.183 | | | Beryllium | ND | ND | ND | | ND | ND | ND | 0.0102 | ND | ND | | | Cadmium | ND | 0.0061 | 0.01 | 0.0076 | 0.0051 | 0.005 | | NT | NT | NT | NT | NT | 0.0025 | 0.0101 | ND | 0.0059 | ND | ND | | | Calcium | | NT | | | | | | | | NT | NT | NT | 99 | 92.5 | 89.8 | 84.7 | 93.5 | | | | Chloride | NT | NT | | | | | | NT | | NT | NT | NT | 310 | 0_ | 290 | 211 | 297 | | | < < | Chromium | ND | ND | 0.0025 | | ND | ND | ND | ND | | ND | ND | 0.0102 | ND | ND | ND | 0.0321 | ND | ND | | | Cobalt | 0.0524 | | 0.0614 | 0.0022 | 0.0437 | 0.0411 | 0.036 | 0.0664 | 0.0239 | 0.0361 | 0.0332 | 0.0204 | 0.036 | 0.0777 | 0.0337 | 0.144 | 0.025 | 0.025 | | M | COD | | NT | NT | | NT | | NT | | | NT | NT | NT | 30.8 | 32.3 | 30 | 33.7 | 21.6 | | | 0 | Copper | | ND | 0.0245 | 0.016 | | 0.0149 | 0.0076 | 0.0092 | 0.0108 | 0.0088 | 0.0109 | 0.0119 | 0.0103 | 0.0209 | 0.0102 | 0.17 | 0.00569 | | | <u>_</u> | Hardness | | NT | | | NT | | NT | | | NT | NT | NT | 540 | 500 | 660 | 524 | 598 | | | .≘ | Iron | | NT | NT | | NT | | | | | NT | NT | NT | 1.61 | 4.65 | 1.33 | 48.4 | 1.01 | 1.05 | | ocation | Lead | ND | ND | 0.0179 | 0.0026 | | | | ND | 0.0079 | | ND | | ND | 0.0059 | | 0.0723 | | ND | | 6 | Magnesium | | NT | NT | | NT | NT | | | | NT | NT | NT | 69.2 | 64.2 | 67 | 55 | 68.6 | | | | Manganese | 5.688 | 0.5364 | 5.137 | 0.8988 | 5.408 | 6.8885 | | | | NT | NT | NT | 5.23 | 7.39 | 6.38 | 13.1 | 5.83 | | | | Mercury | 0.0003 | 0.0019 | 0.0011 | 0.0019 | | ND | 0.0003 | 0.0005 | 0.0014 | 0.0008 | 0.0005 | 0.0009 | | 0.00232 | | ND | ND | ND | | <u>=</u> | Nickel | 0.0323 | 0.0138 | 0.0437 | 0.0182 | 0.0343 | 0.0382 | 0.0236 | 0.0228 | 0.0306 | 0.0285 | 0.0269 | 0.0376 | 0.0299 | 0.0306 | 0.0232 | 0.0701 | 0.0222 | 0.0192 | | 1 2 | Nitrate | NT | NT | | | | | NT | | | NT | NT | | ND | ND | ND | ND | ND | ND | | <u> </u> | pН | | NT | | | | | | | | NT | NT | NT | 6.01 | 5.28 | | | 5.49 | | | _ | Potassium | | NT | | | NT | | | | | NT | NT | NT | 5.71 | 7.17 | 6.81 | 13.7 | 6.83 | | | 2 | Selenium | | ND | 0.0048 | | 0.0022 | 0.0022 | | 0.0029 | 0.0067 | | ND | ND | 0.0048 | | 0.0062 | 0.0185 | | ND | | | Silver | | ND | ND | | ND | ND | | ND | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | | | NT | | | | | | | | NT | NT | NT | 107 | 97.5 | 101 | 38.5 | 99.8 | 99.4 | | | Spec. Cond. | | NT | | | | | | | | NT | NT | NT | 1444 | 1363 | | | 1227 | 1405 | | | Sulfate | | | | | | | | | | NT | NT | NT | 12.6 | _ | 18.4 | 17 | | | | | TDS | | | | | | | | | | NT | NT | NT | 1192 | 1032 | 1068 | 908 | | | | | Thallium | ND | ND | | | | ND | | | | ND | ND | | ND | | ND | | ND | ND | | | Turbidity | Nt | Nt | | | | Nt | | | Nt | Nt | Nt | Nt | 1.97 | 19.4 | | 0.83 | | NT | | | Vanadium | | ND | ND | | | ND | ND | ND | ND | ND | ND | | ND | ND | ND | 0.0919 | | ND | | | Zinc | NT | NT | NT | NT | NT | NT | 0.0193 | 0.0229 | 0.0219 | 0.025 | 0.0305 | 0.0305 | 0.0249 | 0.025 | 0.0218 | 0.267 | 0.021 | 0.0211 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 17 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u> </u> | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 110 | 100 | 108 | 44 | 106 | 116 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | NT | NT | NT | ND | | Arsenic | NT | NT | NT | ND | | Barium | | NT | NT | 0.142 | 0.0989 | 0.0431 | 0.036 | 0.0565 | 0.0146 | 0.0228 | ND | 0.0298 | 0.0186 | 0.0211 | 0.0153 | 0.0211 | 0.0173 | 0.0174 | | | Beryllium | NT | NT | | | ND | ND | ND | | | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | | | | | ND | | | | | | | | ND | ND | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | NT | 33.3 | 39 | 32.3 | 34.1 | 33 | | | | Chloride | | | | | | NT | | | NT | NT | NT | NT | 69.9 | 83.9 | 65.8 | 80.1 | 62.7 | 76.9 | | 7 | Chromium | | | NT | 0.0024 | | ND | | | | | ND | | ND | ND | ND | ND | ND | ND | | _ | Cobalt | | | | | | ND | ND | | | | ND | | | ND | ND | ND | ND | ND | |)B | | | | NT | NT | | | NT | | | NT | | | ND | 12.1 | 7.4 | 6.9 | | 8.1 | | 0 | Copper | | NT | NT | 0.0145 | 0.0215 | 0.0102 | 0.0151 | 0.0048 | 0.009 | 0.0055 | | ND | 0.0061 | 0.0062 | 0.0068 | | ND | 0.00512 | | l o | Hardness | | | | | NT | | | | | | NT | NT | 165 | 189 | 162 | 182 | 153 | | | Ē | Iron | | | | | NT | NT | | | | | | NT | 0.368 | | 0.228 | | ND | ND | | ocation | Lead | | | | ND | 0.0032 | 0.0032 | 0.0046 | | | | | | ND | ND | ND | ND | ND | ND | | | Magnesium | | | | | NT | NT | | | | | | NT | 19.7 | 23.4 | 19.8 | 27 | 20.6 | 24.5 | | J L | Manganese | | | NT | 1.03 | 0.6074 | 0.2305 | | | | | NT | NT | 0.102 | 0.131 | 0.107 | 0.106 | 0.108 | _ | | ľ | , | | | NT | 0.0006 | 0.0004 | 0.0005 | | ND | 0.0015 | | ND | ND | | ND | ND | ND | ND | ND | | iz | | | NT | NT | 0.0058 | 0.0069 | 0.0065 | 0.0156 | 0.0035 | 0.0062 | 0.0064 | | ND | 0.0089 | 0.0101 | 0.0102 | 0.0084 | 0.00652 | 0.00911 | | <u>ਖ਼</u> | Nitrate | | | | | | | NT | | | | NT | NT | 1.622 | 2.25 | 1.377 | 1.59 | 1.14 | 1.26 | | Monitoring | pН | | | | | | | | | | | | NT | 5.84 | 6.14 | | | 5.46 | | | | Potassium | | | | | | | | | | | | NT | 3 | | 2.32 | 3.24 | 2.69 | | | _ | Selenium | | | | | | ND | | | | | | | | ND | ND | ND | ND | ND | | | Silver | | | | | | ND | | | | | ND | | ND | ND | ND | ND | ND | ND | | | | | | | | | | | | NT | NT | NT | NT | 24.5 | 27.8 | 25.4 | 27.9 | 22.8 | 30 | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 481.7 | 511.8 | | | 421.1 | 497.1 | | | Sulfate | | | | | | | | | | | | NT | 7.14 | 14.9 | | 4.78 | 5.57 | 12 | | | TDS | | | | | | | | | | | | NT | 308 | 400 | 408 | 120 | | | | | Thallium | | | | | | ND | | | | | ND | | | ND | ND | | | ND | | | Turbidity | | | | | | | | | | | NT | NT | 2.49 | | | 0.167 | | NT | | | Vanadium | | | | | | ND | ND | | ND | | ND | | | ND | ND | ND | ND | ND | | | Zinc | NT 0.013 | 0.0478 | 0.0222 | 0.0236 | 0.0125 | ND | 0.0134 | 0.00773 | 0.00765 | 0.00631 | 0.00533 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 18 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | - | | | | | | | | | | | | | | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 242 | 93 | 230 | 74 | 228 | 51 | | | Ammonia | NT 0.646 | 0.228 | 0.29 | ND | 0.307 | ND | | | Antimony | ND | | Arsenic | ND | ND | ND | | ND | ND | 0.0366 | ND | ND | ND | ND | ND | 0.0069 | ND | ND | ND | ND | ND | | | Barium | 0.0346 | 0.0999 | 0.1026 | 0.3716 | 0.0852 | 0.0991 | 0.3997 | 0.0364 | 0.2282 | 0.0856 | 0.1015 | 0.0881 | 0.119 | 0.0902 | 0.0785 | 0.0857 | 0.0919 | 0.0722 | | | Beryllium | ND | ND | ND | 0.0039 | ND | ND | 0.0088 | | ND | | Cadmium | ND | | | | ND | ND | | | NT | | | NT | 0.00 | ND | ND | ND | ND | ND | | | | | NT | NT | | | NT | | | NT | | NT | NT | 29.5 | 20.3 | 18 | | 21.6 | | | | | | NT | | | | NT | NT | NT | NT | | NT | NT | 3.16 | 3.48 | 7.73 | 4.61 | 10 | | | 2 | | ND | ND | ND | | ND | 0.009 | | ND | 0.0521 | | ND | ND | 0.019 | | ND | 0.0053 | | ND | | _ | | ND | 0.0213 | 0.0217 | 0.0583 | 0.0219 | 0.0163 | 0.2322 | ND | 0.0599 | 0.0095 | | 0.0134 | 0.0273 | 0.0099 | | 0.0072 | | ND | |) B | COD | | NT | NT | | NT | NT | NT | | NT | NT | NT | NT | 49.3 | 11.1 | 11.2 | ND | 27.3 | | | 0 | Copper | | ND | 0.0113 | 0.0416 | 0.0153 | 0.0267 | 0.5593 | 0.0061 | 0.1171 | 0.0067 | 0.0059 | ND | 0.0475 | 0.0103 | 0.0083 | 0.0119 | 0.0094 | | | | Hardness | | | | | NT | NT | NT | | NT | | NT | NT | 600 | 270 | 165 | 114 | 156 | | | Ţ. | Iron | | | NT | | NT | NT | | | NT | | | NT | 54.9 | 16 | 27.3 | 9.24 | 39.4 | | | ocation | Lead | ND | ND | 0.0026 | | ND | 0.0088 | | ND | | | ND | ND | 0.017 | | ND | ND | ND | ND | | 9 | Magnesium | | | NT | | | NT | | | NT | | | NT | 23.2 | 24.5 | 17.4 | 22 | 21.6 | | |) l | Manganese | 0.068 | 3.5 | | 6.422 | 4.44 | | | | NT | | NT | NT | 5.73 | 4.5 | | 1.78 | 3.27 | | | ľ | Mercury | ND | ND | ND | | ND | ND | | | ND | i | Nickel | 0.0037 | 0.0288 | 0.0206 | 0.1422 | 0.0197 | 0.0259 | 0.4895 | 0.0086 | 0.112 | 0.0084 | 0.0072 | 0.0157 | 0.0473 | 0.0178 | 0.0098 | 0.0149 | 0.00599 | | | jt | Nitrate | NT | | | | NT | NT | | | NT | | NT | NT | ND | ND | 0.008 | ND | ND | ND | | Monitoring | pН | | | | | | NT | | | NT | | | NT
| 6.01 | 6.62 | | | 6.15 | | | l ĕ | Potassium | | | | | | NT | | | NT | | | NT | 3.15 | 2.3 | 2.18 | _ | 2.46 | | | | Selenium | | | ND | 0.0134 | | ND | | | ND | | | | ND | ND | ND | ND | ND | ND | | | | | ND | | | | NT | | | ND | | ND | | ND | ND | ND | ND | ND | ND | | | | NT 35 | 14.5 | 53.3 | 36.1 | 59.1 | 29.2 | | | Spec. Cond. | NT 576.4 | 368.7 | | | 535.4 | 323.1 | | | Sulfate | NT 78.6 | 78.1 | 56.5 | 78.9 | 49.2 | | | | TDS | | | | | | NT | | | NT | | | NT | 328 | | 324 | 420 | | | | | Thallium | ND | ND | | | | ND | 0.0024 | | 0.0024 | | ND | | ND | | ND | | | ND | | | Turbidity | NT | NT | | | | NT | | | NT | | NT | NT | 125 | | | 96.8 | NT | NT | | | Vanadium | | ND | ND | 0.039 | | 0.0032 | 0.1477 | | 0.0282 | | ND | ND | 0.0052 | | ND | ND | ND | ND | | | Zinc | NT | NT | NT | NT | NT | NT | 0.0081 | 1.2155 | 0.022 | 0.021 | 0.0955 | 0.0955 | 0.698 | 0.0329 | 0.0212 | 0.0544 | 0.0668 | 0.0966 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 19 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | - | nota | o an | <u>u </u> | | matt | | adiit | , i ai | anne | , to i o | | <u> </u> | Ciiii | | iiiia | <u> </u> | | | |-------------|-------------|--------------|----------------|--|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 423 | 416 | 472 | 282 | 267 | 249 | | | Ammonia | NT 1.57 | 0.771 | 3.69 | 0.629 | 1.91 | 0.731 | | | Antimony | ND | | Arsenic | ND | 0.0034 | ND | ND | 0.004 | ND | ND | ND | ND | 0.0024 | ND | ND | 0.0037 | 0.012 | ND | ND | ND | ND | | | Barium | 0.0846 | 0.1361 | 0.08 | 0.0817 | 0.2081 | 0.0658 | 0.0794 | 0.0832 | 0.1065 | 0.1388 | 0.1179 | 0.1126 | 1.31 | 0.445 | 0.192 | 0.195 | 0.163 | 0.146 | | | Beryllium | ND 0.0137 | 0.0057 | ND | ND | ND | ND | | | Cadmium | ND | ND | ND | ND | 0.0024 | ND | ND | NT | NT | NT | NT | NT | 0.0174 | 0.0072 | ND | ND | ND | ND | | | Calcium | NT | NT | NT | NT | NT | | | NT | NT | NT | NT | NT | 111 | 89.9 | 90.2 | 92.7 | 65.1 | 73.3 | | | Chloride | | NT | | | | | | | NT | | NT | NT | 156 | 183 | 173 | 62.3 | 86.6 | | | 2 | Chromium | ND | 0.0228 | 0.0035 | ND | 0.0652 | ND | ND | ND | 0.0046 | | | ND | 0.105 | 0.141 | 0.0193 | | ND | 0.0297 | | 7 | Cobalt | 0.0109 | 0.041 | 0.0104 | 0.0166 | | 0.0119 | 0.0157 | 0.0187 | 0.0229 | 0.0329 | 0.027 | 0.0241 | 0.418 | 0.272 | 0.0532 | 0.0244 | 0.0285 | | | OB | COD | NT | NT | NT | | NT | NT | NT | | NT | NT | NT | NT | 1080 | 79.4 | 90 | 107 | 19.6 | | | | Copper | ND | 0.0339 | 0.0153 | 0.0137 | 0.0774 | 0.0085 | 0.0075 | 0.0065 | 0.0083 | 0.0146 | | ND | 0.364 | 0.188 | 0.0302 | 0.0062 | 0.0168 | | | l p | Hardness | | | | | | | | | NT | NT | NT | NT | 740 | 520 | 750 | 450 | 292 | | | ocation | Iron | | | | | NT | | | | NT | NT | | NT | 239 | 210 | 29.9 | 1.32 | 5.73 | _ | | ၂ ဗိ | Lead | ND | | | ND | 0.026 | | | | ND | 0.0026 | | ND | 0.148 | 0.0358 | | ND | 0.0137 | 0.00771 | | | Magnesium | | NT | | | NT | | | | | NT | | NT | 82.8 | 109 | 71.6 | 70.2 | 44.2 | 57.7 | | | Manganese | 7.731 | 1.9548 | 5.523 | 11.562 | 15.005 | 10.264 | 9.249 | | NT | NT | | NT | 55.8 | 33.5 | 24.2 | 6.86 | 10.52 | | | ו בר | Mercury | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | 0.0003 | | ND | 0.00142 | | 0.00129 | | l ï | Nickel | 0.0074 | 0.0446 | 0.0138 | 0.0109 | | 0.009 | 0.0097 | 0.0113 | 0.0161 | 0.0215 | 0.0128 | 0.0127 | 0.226 | 0.281 | 0.0506 | 0.0183 | 0.0128 | | | Monitoring | Nitrate | NT | NT | | | NT | | | | NT | NT | NT | NT | 0.6782 | 2.31 | ND | 1.33 | | ND _ | | <u>ا</u> ج | pH | NT | NT | | | NT | | | | NT | NT | NT | NT | 6.19 | 5.51 | | | 8.7 | | | l ĕ | Potassium | NT | NT | | | NT | NT | | | NT | NT | NT | NT | 17.6 | 15.9 | 16.6 | 7.24 | 14.3 | | | - | Selenium | ND | | ND | ND | 0.0053 | | | ND | 0.0023 | | ND | ND | 0.0364 | 0.0172 | 0.0059 | | ND | 0.00523 | | | Silver | | ND | | | ND | | | | ND | ND | ND | | ND | ND 70.0 | ND | ND | ND 540 | ND 40.0 | | | Sodium | | NT | | | | | | | NT | NT | | NT | 84 | 76.6 | 88.9 | 100 | 54.3
NT | | | | Spec. Cond. | | NT | | | | | | | | NT | NT | NT | 1301 | 1340 | | | | 627.7 | | | Sulfate | | | | | | | | | NT | | | NT | 71.8 | 75.3 | 67 | 32.1 | 39.7 | 44.1 | | | TDS | | | | | | | | | NT | | | NT | 888 | 916 | 916 | 532 | 252 | | | | Thallium | ND | ND | | | | ND | | | ND | ND | ND | | | | ND | | | ND | | | Turbidity | | NT | | | | | | | NT | NT | | NT | 10100 | 3870 | 357 | 15050 | | NT | | | Vanadium | ND | 0.0171 | 0.0022 | | 0.0629 | | ND | | ND | 0.0087 | | ND | 0.156 | 0.129 | 0.0141 | ND | 0.00768 | | | | Zinc | 0.0243 | ΝI | NT 3.95 | 1.09 | 0.109 | 0.0216 | 0.0256 | 0.112 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 20 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u> </u> | | | | <u> </u> | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 80 | 115 | 79 | 98 | 31 | 99 | | l [| Ammonia | NT ND | 0.239 | ND | ND | ND | ND | | l [| Antimony | NT | ND NT | ND | | Arsenic | NT | ND NT | ND | | Barium | NT | 0.0449 | 0.047 | 0.0451 | 0.0511 | 0.0468 | 0.0502 | 0.0481 | 0.0545 | 0.0454 | NT | 0.0786 | 0.0588 | 0.0596 | 0.0681 | 0.029 | 0.0197 | 0.0367 | | | Beryllium | NT | ND NT | ND | | Cadmium | NT | ND | ND | ND | ND | ND | ND | NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | l [| Calcium | NT 33.4 | 36.7 | 32.5 | 27.4 | 10.3 | | | | Chloride | NT 58.2 | 102 | 67.7 | 38.1 | 5.32 | 157 | | l [| Chromium | NT | ND NT | 0.0041 | ND | ND | ND | ND | ND | ND | | 15 | Cobalt | NT | ND | | | | ND | | | | | NT | 0.0027 | | ND | ND | ND | ND | ND | | 1 | COD | NT | NT | NT | | | NT | NT | NT | NT | | NT | NT | ND | 7.2 | 6.7 | 24.8 | 14.1 | 22.8 | | S | Copper | NT | 0.0149 | 0.0104 | | ND | 0.0074 | 0.0055 | 0.0059 | 0.0076 | 0.005 | | 0.0139 | 0.0058 | 0.0085 | 0.0077 | 0.0062 | | 0.00811 | | 5 | Hardness | | NT | | | | | | | | | NT | NT | 160 | 180 | 160 | 95 | 29 | | | ocation | Iron | | | | | | | | | | | NT | NT | 0.372 | 0.814 | 0.701 | 0.863 | | 0.846 | | ၂ ၓၟ ၂ | Lead | NT | ND | | | | ND | | | | | NT | 0.0032 | | ND | ND | ND | ND | ND | | ㅣ ᄋᄋ ㅣ | Magnesium | | NT | | | | NT | | | | | NT | NT | 13.7 | 17.6 | 15 | | 2.23 | | | - | Manganese | NT | 0.2846 | 0.1448 | 0.1394 | 0.1185 | 0.1826 | | | | | NT | NT | 0.101 | 0.294 | 0.19 | | 0.0434 | 0.245 | | ا `قِ ا | Mercury | NT | ND | ND | | ND | ND | ND | | ND | | NT | ND | 🚡 | Nickel | NT | 0.0091 | 0.006 | 0.009 | 0.0047 | 0.0091 | 0.0043 | 0.0087 | 0.0069 | | NT | 0.0172 | 0.0083 | 0.0104 | 0.0078 | 0.0052 | | 0.00661 | | 1 | Nitrate | | | | | | | NT | | | | NT | NT | 1.465 | 1.3279 | 1.3876 | 0.401 | | 0.799 | | Monitoring | pН | | | | | | | | | | | NT | NT | 7.39 | 7.19 | | | 7.34 | | | l ĕ l | Potassium | | | | | | | | | | | NT | NT | 2.59 | 3.08 | 2.58 | 3.48 | 2.15 | | | - | Selenium | | ND | | | | ND | | | | | NT | | | ND | ND | ND | ND | ND | | | Silver | NT | ND | | | | ND | | | | | NT | | ND | ND | ND | ND | ND | ND | | | | | NT | | | | | | | NT | NT | NT | NT | 24.5 | 59 | 24.8 | 28 | 4.33 | 108 | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 386.7 | 538.8 | | | 82.1 | 703.9 | | | Sulfate | | | | | | | | | | | NT | NT | 20.7 | 15.6 | 25.5 | | | | | | TDS | | | | | | | | | | | NT | NT | 280 | | 404 | 204 | 1276 | | | | Thallium | NT | ND | | | | ND | | | | | NT | | | | ND | | ND | ND | | | Turbidity | | NT | | | | | | | | | NT | NT | 3.04 | 5.24 | | 25.6 | | NT | | | Vanadium | | ND | | | | ND | ND | ND | ND | | NT | 0.0027 | | ND | ND | ND | ND | ND | | | Zinc | NT 0.0246 | 0.0187 | 0.0296 | NT | 0.0536 | 0.0202 | 0.0243 | 0.0174 | 0.0131 | 0.0103 | 0.0155 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 21 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u> </u> | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 64 | 74 | 70 | 60 | 49 | 52 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | | Barium | 0.0318 | 0.0488 | 0.034 | 0.0321 | 0.0447 | 0.0705 | 0.0582 | 0.0288 | 0.0431 | 0.0433 | 0.0373 | 0.1051 | 0.0392 | 0.0544 | 0.0482 | 0.046 | 0.0357 | 0.0397 | | | Beryllium | ND | ND | ND | | ND | ND | ND | | | | ND | | ND | ND
 ND | ND | ND | ND | | | Cadmium | ND | ND | | | ND | | | | | | | | ND | ND | ND | ND | ND | ND | | | Calcium | | NT | NT | | | | | | | | | NT | 25.7 | 34 | | 23.1 | 33.4 | 23.3 | | | Chloride | | NT | | NT | NT | NT | | | | NT | NT | | NT | 197 | 93.2 | 102 | 50.1 | 110 | | 0 | Chromium | | ND | | ND | 0.0021 | 0.0021 | 0.0026 | | | | | | | ND | ND | ND | ND | ND | | 120 | Cobalt | | ND | ND | | ND | ND | ND | | | | ND | | | ND | ND | ND | ND | ND | | 1 | COD | | NT | | | NT | | NT | | | NT | NT | | ND | 7 | 11.1 | 15.1 | 11.9 | 9.7 | | ၂
တ | Copper | | ND | | ND | 0.0116 | 0.0105 | 0.0085 | 0.0104 | 0.0066 | 0.0094 | 0.0089 | 0.0152 | 0.0056 | 0.0105 | 0.0068 | 0.0052 | 0.00623 | 0.00914 | | l c | Hardness | | | | | NT | | | | | | NT | NT | 340 | 150 | 180 | 113 | 73 | | | ti | Iron | | | | | NT | | | | | | | NT | 0.525 | 1 | 0.705 | 0.661 | 0.75 | _ | | ocation | Lead | ND | ND | | ND | 0.0031 | 0.0028 | | 0.0021 | | | | | ND | ND | ND | ND | 0.00528 | | | | Magnesium | | NT | | | NT | NT | | | | | | NT | 12.3 | 19.1 | 16.3 | 14.2 | 12.6 | | | | Manganese | 0.0988 | 0.2052 | 0.0878 | 0.0937 | 0.2585 | 0.2074 | | | | | NT | NT | 0.0634 | 0.238 | 0.0817 | 0.126 | 0.051 | 0.0853 | | | Mercury | ND | ND | ND | ND | | ND | ND | | ND | | ND | Ē | Nickel | 0.0043 | 0.0089 | 0.0055 | 0.0072 | 0.008 | 0.0104 | 0.0082 | 0.0116 | 0.0077 | 0.0078 | 0.006 | 0.0113 | 0.0066 | 0.0155 | 0.0066 | 0.0098 | 0.00741 | 0.00818 | | t | Nitrate | NT | | | | | | | | | | NT | NT | 1.029 | 1.2126 | 0.792 | 0.787 | 0.581 | 1.33 | | Ē | pН | | | | | | | | | | | NT | NT | 7.41 | 5.96 | | | 6.98 | | | ₽ | Potassium | | | | | | | | | | | | NT | 1.88 | 3 | 3.02 | 2.51 | 3.08 | | | _ | Selenium | | ND | | | | ND | | | | | | | | ND | ND | ND | ND | ND | | | Silver | | ND | | | | ND | | | | | ND | | ND | ND | ND | ND | ND | ND | | | | | NT | | | | | | | NT | | | NT | 27.5 | 170 | 34 | 53.7 | 34.5 | 65.1 | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 370.8 | 1116 | | | 236.6 | 489.4 | | | Sulfate | | | | | | | | | | | | NT | 7.6 | | 13.5 | | | | | | TDS | | | | | | | | | | | | NT | 244 | | | | 208 | | | | Thallium | ND | ND | | | | ND | | | | | | | | | ND | | | ND | | | Turbidity | | NT | | | | | NT | | | | | NT | 2.12 | | | | | NT | | | Vanadium | | ND | | ND | 0.004 | | 0.0033 | 0.0028 | | | ND | | | | ND | ND | ND | ND | | | Zinc | NT ND | 0.0124 | ND | 0.00891 | 0.00844 | 0.0106 | Note: MCL exceedances are indicated in Red Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | <u> </u> | <u>u </u> | | | | adiit | , i ai | anno | , to i o | | <u></u> | <u> </u> | | iiiia | <u> </u> | | | |-------------|-------------|--------------|----------------|--|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|---------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 70 | 235 | 88 | 243 | 203 | 237 | | | Ammonia | NT ND | ND | ND | ND | ND | ND | | | Antimony | ND | ND | | | | ND | | | | ND | ND | | ND | ND | ND | ND | ND | ND | | | Arsenic | ND | ND | | | | ND | | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | | Barium | 0.0327 | 0.0745 | 0.0376 | 0.0301 | 0.0351 | 0.0592 | 0.0472 | 0.1 | 0.0404 | 0.038 | | 0.0447 | 0.0912 | 0.0566 | 0.0431 | 0.0556 | 0.079 | | | | Beryllium | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | | ND | ND | | | Cadmium | ND | | | | | | | | | | | | ND | ND | ND | | ND | ND | | | Calcium | | | | | | | | | | | | NT | 18.1 | 40 | | 33.9 | | | | | Chloride | | | | | | | | | | NT | | NT | 51.7 | 85.7 | 98.4 | 99.6 | | | | | Chromium | ND | ND | | | | ND | | | | ND | | | | | ND | | | ND | | | Cobalt | ND | | | | | ND | ND | 0.0134 | | ND | ND | ND | 0.0137 | | ND | ND | ND | ND | | ST | COD | | NT | | | | | NT | | | NT | NT | NT | 34.8 | 34.7 | 7.7 | 35.1 | 39.2 | 32.6 | | | Copper | | ND | 0.0105 | 0.0134 | | | 0.0049 | 0.0063 | 0.0069 | 0.0075 | | 0.0058 | 0.008 | 0.0097 | 0.0066 | 0.0067 | 0.00767 | | | ō | Hardness | | | | | | | | | | NT | NT | NT | 100 | 222 | 170 | 180 | 174 | | | H if | Iron | | | | | | | | | | NT | NT | NT | 10.1 | 0.529 | 0.286 | 0.657 | 0.613 | | | Location | Lead | | ND | | | ND | 0.0032 | | | | ND | ND | ND | 0.0036 | | ND | | | ND | | | Magnesium | | | | | | | | | | | | NT | 10.6 | 30.7 | 18.4 | 26.9 | | 29 | | | Manganese | 0.2133 | 0.5262 | 0.052 | 0.112 | 0.0871 | 0.2699 | 0.0559 | | | NT | | NT | 2.37 | 0.0486 | 0.0179 | 0.143 | | | | آ ڪا | Mercury | ND | ND | ND | | | ND | ND | | | | ND | | ND | | ND | ND | ND | ND | | 6 | Nickel | 0.0041 | 0.0151 | 0.0037 | 0.0057 | 0.003 | 0.0083 | 0.0024 | 0.0058 | 0.0037 | 0.0058 | | 0.0028 | 0.008 | 0.0102 | | 0.0095 | 0.0103 | | | ı — ı | Nitrate | | | | | | | | | | | | | ND | 0.7773 | 1.117 | 0.392 | | 0.621 | | 5 | pH | | | | | | | | | | | | NT | 6.7 | 6.31 | | | 7.07 | | | Š | Potassium | | | | | | | | | | | | NT | 2.92 | 14.3 | | 14.8 | 14.9 | | | | Selenium | ND | | | | | | | | | ND | ND | | | | ND | ND | 0.0082 | | | | Silver | | | | | | | | | | ND | ND | | ND | | ND | ND
101 | | ND | | | Sodium | | | | | | | | | | NT | | NT | 25.7
302.3 | 110 | 37 | 121 | 115
795.9 | | | 1 1 | Spec. Cond. | | | | | | | | | | NT | NT | NT | | 884.2 | | 00.0 | | 0.2 | | | Sulfate | | | | | | | | | | NT | | NT | 5.32 | 42.1 | 10.8 | 26.6 | 32.8 | | | | TDS | | | | | | | | | | NT | | NT | 196 | 500 | 500 | 524 | 588 | | | | Thallium | ND | | | | | | | | | ND | ND | | ND | ND | ND | ND | | ND | | | Turbidity | | | | | | | | | | NT | NT | NT | 90.3 | 5.03 | 0.696 | 8.26 | | NT | | | Vanadium | ND | ND | | | | | ND | ND | ND | ND | ND | ND | 0.0036 | | ND | ND | ND | ND | | | Zinc | NT 0.0185 | 0.0032 | ND | ND | 0.0058 | 0.0165 | 0.0053 | ND | 0.00604 | 0.00665 | 0.00539 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 23 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site Parameter | _ ~ | l | | | | | | | | | | | | | | | | | |-------------------------------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Cample Oile Tarameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | Alkalinity | NT 109 | 106 | 115 | 105 | 81 | 128 | | Ammonia | NT ND | 0.497 | ND | 0.477 | ND | 0.383 | | Antimony | ND | Arsenic | ND | Barium | 0.0484 | 0.0496 | 0.0506 | 0.0475 | 0.0885 | 0.0681 | 0.066 | 0.0509 | 0.0699 | 0.0508 | 0.0549 | 0.1404 | 0.0624 | 0.0596 | 0.0632 | 0.0498 | 0.0488 | 0.0706 | | Beryllium | ND | Cadmium | ND NT | NT | NT | NT | NT | ND | ND | ND | ND | ND | ND | | Calcium | NT 38.2 | 37.9 | 42.8 | 32.5 | 27.4 | 56.8 | | Chloride | NT 85.8 | 68.8 | 97.6 | 79.8 | 50.6 | | | Chromium | 0.0024 | ND | ND | ND | 0.0167 | 0.0202 | 0.013 | 0.0034 | 0.0194 | 0.0033 | ND | 0.0422 | ND | | ND | ND | ND | 0.0234 | | Cobalt | ND | ND | ND | | | | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | I ⊢ ICOD | NT | NT | NT | | | | NT | | | | NT | | ND | 14.1 | 10 | 18.5 | 15.3 | 17.2 | | Copper | ND | ND | 0.0107 | 0.0162 | 0.0166 | 0.0109 | 0.0079 | 0.0072 | 0.0109 | 0.007 | 0.0076 | 0.0127 | 0.0067 | 0.009 | 0.0076 | 0.0066 | 0.00714 | 0.00996 | | Hardness | NT | | | | | | | | | | NT | NT | 170 | 150 | 170 | 128 | 110 | | | Hardness Iron Lead Magnesium | NT | NT | | NT | NT | | | NT | | | NT | NT | 0.421 | 0.98 | 0.357 | 1.04 | 0.555 | | | Lead | ND | ND | ND | | ND | 0.0023 | | ND | 0.0039 | | ND | 0.0027 | | ND | ND | ND | ND | ND | | Magnesium | NT | NT | | | | NT | | | | | | NT | 16.3 | 15.9 | | 13.6 | 8.98 | | | Manganese | 0.266 | 0.2892 | 0.1555 | 0.2356 | | 0.2724 | 0.1056 | | | | | NT | 0.154 | 0.274 | 0.147 | 0.185 | 0.0928 | | | Mercury Nickel Nitrate pH Potassium | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | | ND | ND | ND | ND | ND | ND | | Nickel | 0.0058 | 0.0059 | 0.0046 | 0.0075 | 0.0059 | 0.0086 | 0.0044 | 0.0074 | 0.007 | 0.0085 | 0.0052 | 0.0095 | 0.0086 | 0.0136 | 0.0077 | 0.0086 | 0.00908 | 0.00831 | | Nitrate | NT | NT | | | | | | | NT | | NT | NT | 1.8591 | 1.124 | 1.4818 | 0.831 | 0.774 | 1.489 | | pH pH | NT | NT | | | | | | | | | NT | NT | 7.54 | 6.61 | | | 7.05 | | | Potassium | NT | NT | | | | NT | | | | | NT | NT | 4.3 | 4.4 | 6.84 | 4.15 | | | | Selenium | ND | ND | ND | | | ND | | | | | ND | | | | ND | | | ND | | Silver | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | ND | ND | ND | | Sodium | NT | NT | | NT | NT | | | | NT | NT | NT | NT | 34.2 | 69.8 | 40.1 | 45.6 | 20.4 | 77.1 | | Spec. Cond. | NT 520.6 | 625.1 | | | 291.6 | 691 | | Sulfate | NT | NT | NT | NT | NT | | | NT | NT | NT | NT | NT | 20.8 | 18.4 | 25.2 | 12.8 | 11.6 | 41.4 | | TDS | NT 352 | 392 | 524 | 312 | 256 | 448 | | Thallium | ND | ND | | | | ND | | | ND | | ND | | | | ND | | | ND | | Turbidity | NT | NT | | | | | | | NT | NT | NT | NT | 1.96 | 9.24 | 0.753 | 10.7 | | NT | | Vanadium | ND | ND | ND | | | ND | ND | ND | ND | ND | ND | | | ND | ND | ND | ND | ND | | Zinc | NT 0.0167 | 0.0187 | 0.016 | ND | 0.0342 | ND | 0.0166 | 0.00661 | 0.0145 | 0.0121 | 0.0143 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 24 of 41 Table 4 Metals and Other Water Quality
Parameters - Long Term Summary | | | | | | | | | | | | | _ | <u>a .</u> | | | | <u> </u> | | | |-------------|-----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|----------------|------------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | NT 48 | 110 | 44 | 32 | 42 | 34 | | | Ammonia | NT ND | 0.456 | ND | ND | ND | ND | | | Antimony | ND | | Arsenic | ND | | Barium | 0.0241 | 0.032 | 0.0252 | 0.0298 | 0.0436 | 0.0294 | 0.0265 | 0.0297 | 0.049 | 0.0305 | 0.0405 | 0.0513 | 0.0365 | 0.0532 | 0.0311 | 0.0387 | 0.0315 | | | | Beryllium | | ND | ND | | | ND | ND | | | | ND | | ND | ND | ND | ND | ND | ND | | | Cadmium | ND | ND | | | | | | | | | | | ND | ND | ND | ND | ND | ND | | | Calcium | | NT | | | | | | | | | | NT | 16.2 | 37.9 | 12.5 | 11.8 | 11.9 | | | | Chloride | | NT | | | | | NT | | | | | NT | 32.6 | 92.3 | 28.6 | 27.1 | 29.4 | | | | Chromium | ND | ND | ND | 0.0042 | | ND | ND | 0.0026 | 0.0021 | | ND | | ND | ND | ND | ND | ND | ND | | T80 | Cobalt | ND | ND | ND | ND | 0.0023 | | ND | | ND | | ND | | ND | ND | ND | ND | ND | ND | | 1 (A) | COD | | NT | NT | | | | NT | | | | NT | | ND | 12.5 | 17 | 14.6 | 12.5 | | | | Copper | | ND | 0.0133 | 0.0116 | | 0.0125 | 0.0051 | 0.0072 | 0.007 | 0.0061 | 0.0056 | 0.0064 | 0.0056 | 0.008 | 0.0066 | 0.0068 | 0.005 | | | ocation | Hardness | | NT | | | | | | | NT | | NT | NT | 70 | _ | 68 | | 55 | | | ati | Iron | | NT | | | NT | | NT | | | | NT | NT | 0.32 | 0.821 | 0.863 | 1.44 | 0.52 | | | ŏ | Lead | ND | ND | ND | ND | 0.0028 | 0.0023 | | | | | ND | | ND = | ND | ND | ND | ND | ND = aa | | | Magnesium | NT | NT | NT | | NT | NT | NT | | | | NT | NT | 7.41 | 15.4 | 6.23 | 5.73 | 5.47 | 7.92 | | g | Manganese | 0.3743 | 0.1672 | 0.2107 | 0.1439 | | 0.0739 | 0.132 | | NT
ND | | NT | NT | 0.126 | 0.174 | 0.155 | 0.149 | 0.0565 | | | i i | Mercury | ND
0.0025 | ND | ND | | ND
0.0050 | ND | ND | | | | ND | ND | ND
0.0040 | ND
0.0400 | ND | ND
0.0055 | ND
ND | ND
ND | | o l | Nickel | 0.0025
NT | 0.0025
NT | 0.0022 | 0.0055
NT | | 0.0028
NT | | 0.0056 | 0.0043 | 0.0036 | | 0.0035 | 0.0042 | 0.0108
1.1925 | | | | | | Monitoring | Nitrate | | | | | | | | | NT
NT | | | NT
NT | 0.8957
7.65 | 7.37 | 0.35 | 0.856 | 0.423
7 | | | 6 | pH
Potassium | | | | | | | | | | | | NT | 3.08 | 4.64 | 2.68 | 2.16 | 3.82 | 0.00 | | ≥ | Selenium | ND | ND | | | | ND | | | | | ND | | 3.00
ND | ND | 2.00
ND | ND | 3.62
ND | ND | | | Silver | ND | ND | ND | | | | | | | | ND | | ND | ND | ND | ND | ND | ND | | | Sodium | | NT | | | | | | | | | NT | NT | 17.4 | 69 | 14 | 14.6 | 12.1 | 28.2 | | | Spec. Cond. | | NT | | | | | | | | | NT | NT | 216.2 | 616.7 | 1-7 | 14.0 | 162.9 | | | | Sulfate | | | | | | | | | | | | NT | 8.16 | 17.3 | 5.53 | 6.57 | 6.04 | 20 1.2 | | | TDS | | | | | | | | | | | | NT | 144 | | 168 | | 160 | | | | Thallium | ND | ND | | | | ND | | | | | ND | | ND | | ND | | | ND | | | Turbidity | | NT | | | | | | | | | | NT | 1.85 | | 7.86 | 91.8 | | NT | | | Vanadium | | ND | ND | 0.0045 | | | ND | 0.0028 | | | ND | | ND | | ND | ND | ND | ND | | | Zinc | | NT | | | | | NT | 0.0020 | 0.0085 | 0.0066 | | 0.0078 | | 0.0119 | | 0.00952 | 0.00561 | 0.00612 | | | | | | | | | • • • | | 0.0001 | 0.0000 | 0.0000 | – | 0.0070 | – | 0.0110 | – | 3.00002 | 3.00001 | 3.00012 | Note: MCL exceedances are indicated in Red Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | • | | | | 1 | | | | | | | | | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 48 | 49 | 49 | | | | Ammonia | | | | | | | | | | | | | | | | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.0057 | 0.0081 | 0.0089 | 0.00843 | | | Beryllium | | | | | | | | | | | . 1 | 1/2 | | | | | ND | ND | | | Cadmium | | | | | | | | | | | 3 5 | | | | ND | | | ND | | | Calcium | | | | | | | | | | 1/1/10 | | 8 | | | 6.83 | 8.18 | 6.92 | | | | Chloride | | | | | | | | | | As | | 3) | 9 | | | | ND | 2.75 | | l m | Chromium | | | | | | | | | | | 1/10 | | | | 0.0055 | | 0.00501 | 0.00854 | | | Cobalt | | | | | | | | | 197 | <u> </u> | | | | | ND | | ND | ND | | ≥ | COD | | | | | | | | 6)] | | | | | | | ND | | ND | ND | | ≥ | Copper | | | | | | | ~ | 13 | | |) | | | | 0.0086 | | 0.00799 | | | l c | Hardness | | | | | | | | | 3, 4 | | | | | | 30 | 36 | | | | ti | Iron | | | | | | 111 | | | 17. | | | | | | 1.22 | 0.651 | 1.56 | | | Sa | Lead | | | | | -6 | 12. | | 0 | 1 | | | | | | | ND | 0.00552 | | | Ŏ | Magnesium | | | | | |) - | | 1 | | | | | | | 3.72 | 4.58 | | | | 그 | Manganese | | | | -11- | 133 | 1 | | | | | | | | | 0.038 | 0.0495 | 0.0441 | 0.0541 | | l Gu | Mercury | | | | | ~ | 27 | S | | | | | | | | ND | ND | ND | ND | | Ē | Nickel | | | 1 | 11. | | 3) | • | | | | | | | | 0.0055 | | 0.00538 | | | t | Nitrate | | | | | -6/- |) | | | | | | | | | ND | ND | ND | ND | | Ē | pH | | | - | - 2 | 43 | | | | | | | | | | | | 5.73 | | | ₽ | Potassium | | | | 7/7 | - | | | | | | | | | | 1.25 | 1.15 | | | | _ | Selenium | | | | 0 - | | | | | | | | | | | | | | ND | | | Silver | | | 1113 | | | | | | | | | | | | | | | ND | | | Sodium | | 67 | | | | | | | | | | | | | 10.2 | 8.37 | 6.78 | | | | Spec. Cond. | | 9 | | | | | | | | | | | | | | | 76.3 | | | | Sulfate | | | | | | | | | | | | | | | | | ND | ND | | | TDS | | | | | | | | | | | | | | | 440 | 92 | | | | | Thallium | | | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 28.2 | 39.4 | | NT | | | Vanadium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Zinc | | | | | | | | | | | | | | | 0.0102 | 0.00685 | 0.0145 | 0.0179 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 26 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | 1 | | 1 | | | | | | | | | | | 1 | , | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 30 | 40 | 35 | 46 | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | 21/2 | | . 0 | | 0.0155 | 0.0299 | 0.0206 | 0.0209 | | | Beryllium | | | | | | | | | | . 61 | 2 | | 11/10 | | ND | ND | ND | ND | | | Cadmium | | | | | | | | | | 11/1 | | | 1.3 | | ND | ND | ND | ND | | | Calcium | | | | | | | | | LG. | | 404 | 75 | | | 4.89 | 7.78 | 8.86 | 10.5 | | | Chloride | | | | | | | | | 40 | | 11/1 | | | | ND | 2.74 | 2.69 | 2.65 | | 4 | Chromium | | | | | | | | 2/// | 12 | 4 | 24. | | | | 0.0084 | 0.0085 | | 0.0404 | | 72 | Cobalt | | | | | | | | 12.4 | | 1 | | | | | ND | | ND | 0.014 | | ≥ | COD | | | | | | | 5(0) | | 4 10 | | | | | | ND | 7.5 | | ND | | ≥ | Copper | | | | | | | | | 1/12 | * | | | | | 0.008 | 0.0118 | | | | l z | Hardness | | | | | | 21.1 | | (0) | | | | | | | 19 | | 22 | | | l ii | Iron | | | | 1 | (0) | 110 | | | | | | | | | 1.38 | | 0.68 | | |) ai | Lead | | | | | | | 1 |) | | | | | | | ND | 0.0055 | | ND | | l ŏ | Magnesium | | | | | 13. | | 37 4 | | | | | | | | 2.15 | | 3.25 | | | | Manganese | | | | 13 | | 3/1 | | | | | | | | | 0.12 | 0.173 | 0.204 | | |
ენ | Mercury | | | | - | |) | | | | | | | | | ND | | ND | 0.00059 | | Ē | Nickel | | | 17. | 4.4 | 121 | | | | | | | | | | 0.0102 | | 0.00547 | | | 1 오 | Nitrate | | | _ | | 13 - | | | | | | | | | | ND | ND | ND | ND | | _ | pН | | | | 112 | | | | | | | | | | | | | 5.14 | | | ₽ | Potassium | | | 155 | 7 | | | | | | | | | | | 1.94 | | | | | | Selenium | | 2 | 13. | | | | | | | | | | | | ND | | ND | ND | | | Silver | | 2) | | | | | | | | | | | | | ND | ND | ND | ND | | | Sodium | | | | | | | | | | | | | | | 7.15 | 7.07 | 6.09 | | | | Spec. Cond. | | | | | | | | | | | | | | | | | 73.1 | 118.1 | | | Sulfate | | | | | | | | | | | | | | | ND | | ND | ND | | | TDS | | | | | | | | | | | | | | | 465 | 112 | 108 | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 58.9 | 117.6 | | NT | | | Vanadium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Zinc | | | | | | | | | | | | | | | 0.0114 | 0.0229 | 0.0187 | 0.0369 | Note: MCL
exceedances are indicated in Red SPRING 2012 Report Page 27 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | _ | | 1 | | | | | | | | | 1 | | | | | | | | | |-------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|----------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 29 | 37 | 33 | | | | Ammonia | | | | | | | | | | | | | | | | | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.0113 | 0.0095 | 0.0123 | 0.00636 | | | Beryllium | | | | | | | | | | | | | | | | | ND | ND | | | Cadmium | | | | | | | | | | | | | | | ND | | ND | ND | | | Calcium | | | | | | | | | | | | | | | 4.92 | 8.72 | 7.2 | 9.89 | | | Chloride | | | | | | | | | | | | | | | | | ND | ND | | l m | Chromium | | | | | | | | | | | | | | | | | | ND | | | Cobalt | | | | | | | | | | | | | 1.11 | | | | | ND | | ≥ | COD | | | | | | | | | | 13 | | 7) 3 | 2 | | | | ND | ND | | ≥ | Copper | | | | | | | | | 1/10 | | | | | | 0.0054 | | ND | 0.00608 | | l c | Hardness | | | | | | | | | 1 | - 1,- | | | | | 18 | 24 | 35 | | | ii | Iron | | | | | | | | 65 17 | • | | | | | | | | | ND | | Sa | Lead | | | | | | | 7(0) | 11- | | 1 | | | | | | | ND | ND | | Ŏ | Magnesium | | | | | | | | | 1 | 1 | | | | | 1.94 | 2.84 | 2.85 | | | 그 | Manganese | | | | | 1 | | ** | _ | - | | | | | | 0.0868 | 0.063 | 0.044 | | | l Gu | Mercury | | | | | -6 | 13. | | | p ^a | | | | | | | | ND | ND | | Ē | Nickel | | | | | | , | _4 | | | | | | | | | | ND | 0.00523 | | t | Nitrate | | | | 1 | 120 | 14. | 2/7 | | | | | | | | ND | ND | ND | ND | | , r | pH | | | | 17 | | 27.2 | | | | | | | | | | | 5 | | | ₽ | Potassium | | | 175 | 4. | | | | | | | | | | | 1.36 | | | | | _ | Selenium | | | | 4. 4 | -07 | | | | | | | | | | | | | ND | | | Silver | | | - | | 100 | | | | | | | | | | | | | ND | | | Sodium | | | | 1/3 | * | | | | | | | | | | 6.99 | 5.22 | 4.88 | | | | Spec. Cond. | | | 1920 | 5. | | | | | | | | | | | | | 54.9 | | | | Sulfate | | 2 | 123 | • | | | | | | | | | | | | | ND | ND | | | TDS | | 6 | | | | | | | | | | | | | 648 | 56 | | | | | Thallium | | | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 2.43 | 1.29 | | NT | | | Vanadium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Zinc | | | | | | | | | | | | | | | 0.00606 | 0.008 | 0.00794 | 0.00753 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 28 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 40 | 24 | 21 | 24 | | | Ammonia | | | | | | | | | | | | | | | ND | | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | 4 | 1 | | | 0.144 | 0.0519 | 0.111 | 0.223 | | | Beryllium | | | | | | | | | | | 3.12 | | 11 | | ND | | ND | ND | | | Cadmium | | | | | | | | | | 1/20 | 5 | • | 11 | | ND | ND | ND | ND | | | Calcium | | | | | | | | | | 1/1/2 | | 0/ | | | 6.89 | 6.1 | 11.1 | 17.2 | | | Chloride | | | | | | | | | · (C) | | . 1 | | | | ND | 2.94 | 2.89 | 5.28 | | ∢ | Chromium | | | | | | | | | | | | | | | 0.053 | 0.0067 | 0.00753 | 0.0815 | | 3 | Cobalt | | | | | | | | 9/ | 1 | | 6 Za | | | | 0.041 | 0.0108 | 0.0188 | | | Monitoring Location MW3A | COD | | | | | | | | 112 | | | | | | | ND | ND | ND | 6.3 | | ≥ | Copper | | | | | | | | - | 35 86 | | | | | | 0.118 | 0.018 | | | | ן ב | Hardness | | | | | | | | 1 | 1 | | | | | | 130 | 14 | 22 | | | | Iron | | | | | | 197 3 | | | 7 | | | | | | 61.7 | 5.99 | | 86.1 | | l ä | Lead | | | | | | - | 4 | | | | | | | | 0.0259 | 0.0089 | 0.023 | 0.0435 | | l ŏ | Magnesium | | | | | 1/11 | <u></u> | | | | | | | | | 20.9 | 3.68 | | | | 1 - 1 | Manganese | | | | | 4.0 | | | | | | | | | | 1.08 | 0.343 | 0.629 | | | gι | Mercury | | | | 113 | | 6 |) | | | | | | | | ND | | | ND | | · Ξ | Nickel | | | | Ť | | | | | | | | | | | 0.0816 | 0.0067 | 0.00978 | | | 2 | Nitrate | | | 13 | 9.1 | 9 20 | | | | | | | | | | ND | ND | ND | ND | | l ï | рН | | | | | 12 | | | | | | | | | | | | 5.55 | 5.85 | | • | Potassium | | | | 0 4 | | | | | | | | | | | 13 | | | | | _ | Selenium | | | 15.67 | 7 | | | | | | | | | | | ND | | | ND | | | Silver | | Q 90 | 130 | | | | | | | | | | | | ND | | ND | ND | | | Sodium | | (3) | | | | | | | | | | | | | 7.66 | 4.12 | 4.19 | 4.33 | | | Spec. Cond. | |) | | | | | | | | | | | | | | | 36.1 | 41.4 | | | Sulfate | | | | | | | | | | | | | | | ND | | ND | ND | | | TDS | | | | | | | | | | | | | | | 100 | 60 | | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 1535 | 151.5 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0529 | 0.01 | 0.0124 | 0.1 | | | Zinc | | | | | | | | | | | | | | | 0.227 | 0.0275 | 0.0459 | 0.235 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 29 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | - | | | | | | | | | | _ | | | | | | | | | | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 160 | 110 | 80 | | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | | | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.0943 | | 0.175 | | | | Beryllium | | | | | | | | | | | | | | | ND | | | ND | | | Cadmium | | | | | | | | | | | | | | | ND | | | ND | | | Calcium | | | | | | | | | | | | | | | 10.7 | 63 | | 42.3 | | | Chloride | | | | | | | | | 1 | | | | | | ND | 4.59 | 2.57 | 3.49 | | м | Chromium | | | | | | | | | | 113 | | \mathfrak{I} | | | 0.0246 | | 0.0129 | 0.0409 | | <u>3</u> | Cobalt | | | | | | | | | Ter | | 120 | | | | ND | 0.027 | 0.00643 | 0.012 | | Monitoring Location MW3B | COD | | | | | | | | | | | 111 | | | | ND | 22.4 | 7.6 | | | ≥ | Copper | | | | | | | | 977 |) | 1 | 17.4 | | | | 0.0125 | 0.0533 | 0.0184 | | | l Z | Hardness | | | | | | | | 13. | | | | | | | 100 | | | | | i | Iron | | | | | | | | - | 4.10 | | | | | | 1.33 | | 3.89 | | | ၂ အ | Lead | | | | | | | | | 1 . | | | | | | ND | 0.041 | 0.011 | 0.0138 | | ŏ | Magnesium | | | | | | 17. | | 20 | | | | | | | 0.715 | | | | | | Manganese | | | | | NU | • | 1 | | | | | | | | 0.0395 | | 0.276 | | |)

 | Mercury | | | | | 11 | | 77 | • | | | | | | | ND | | | ND | | <u>:</u> | Nickel | | | | // | | -16.1 | | | | | | | | | 0.0266 | | 0.0103 | | | 요 | Nitrate | | | | 7- | | E) | | | | | | | | | ND | ND | | ND | | '= | рН | | | | | (g)_ |) | | | | | | | | | | | 10.2 | | | ₽ | Potassium | | | | -2-18 | 73 | | | | | | | | | | 26 | | | 7.83 | | _ | Selenium | | | | | | | | | | | | | | | ND | | | ND | | | Silver | | | -25 | 4 | | | | | | | | | | | ND | | | ND | | | Sodium | | 1 | 617 1 | 5 | | | | | | | | | | | 56.7 | 107 | 41 | 48.6 | | | Spec. Cond. | | 2 70 | 4. | | | | | | | | | | | | | | 279.6 | 223.9 | | | Sulfate | | 9 | | | | | | | | | | | | | 13.5 | | | | | | TDS | | | | | | | | | | | | | | | 332 | | | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 42 | | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0047 | 0.0279 | 0.0098 | 0.022 | | | Zinc | | | | | | | | | | | | | | | 0.0123 | 0.108 | 0.0359 | 0.0724 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 30 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------
--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 70 | | | 56 | | | Ammonia | | | | | | | | | | | | | | | ND | | | ND | | | Antimony | | | | | | | | | | | | | | | ND | | | ND | | | Arsenic | | | | | | | | | | | | | | | ND | | | ND | | | Barium | | | | | | | | | | | | | | | 0.228 | 0.0431 | | | | | Beryllium | | | | | | | | | | | | | | | ND | | | ND | | | Cadmium | | | | | | | | | | | 3.15 | | | | ND | | | ND | | | Calcium | | | | | | | | | | 1100 | | - 6 | (11) | | 34.4 | 35.5 | | | | | Chloride | | | | | | | | | | 113 | | 0/ | | | 106 | 138 | | | | 4 | Chromium | | | | | | | | | | | 120 | | | | 0.0261 | | ND | 0.00761 | | 8 | Cobalt | | | | | | | | | | | 7/7 | | | | 0.0264 | | ND | ND | | ≥ | COD | | | | | | | | 977 | 7 | | 1 | | | | ND | | ND | 3.1 | | 2 | Copper | | | | | | | | | | | | | | | 0.037 | | ND | 0.0145 | | 5 | Hardness | | | | | | | | Ť | A 16 | | | | | | 183 | 200 | | | | l 🛱 | Iron | | | | | | | | | 11 . | | | | | | 37.6 | | | | | l g | Lead | | | | | | 197 3 | | | | | | | | | 0.022 | | ND | ND | | Ŏ | Magnesium | | | | | | - | 3 | | | | | | | | 30.9 | 25.8 | | | | Monitoring Location MW04 | Manganese | | | | | 1/17 | <u> </u> | 71 | | | | | | | | 2.87 | 0.138 | | | |) 2° | Mercury | | | | | 4- | 286 | (C) | | | | | | | | ND | ND | ND | ND | | <u>'</u> | Nickel | | | | 13 | | 2 | • | | | | | | | | 0.0758 | 0.0108 | | 0.0157 | | 유 | Nitrate | | | | | | | | | | | | | | | 0.3756 | 0.378 | | | | <u> </u> | рН | | | | -94.9 | 9 3 | | | | | | | | | | | | 5.7 | | | ₽ | Potassium | | | | | 100 | | | | | | | | | | 12.2 | 3.56 | | | | _ | Selenium | | | | 0 4. | | | | | | | | | | | ND | | | ND | | | Silver | | | 1011 | 1 | | | | | | | | | | | ND | | ND | ND | | | Sodium | | Q 70 | 130 | | | | | | | | | | | | 29.4 | 30.2 | 29.4 | 29.7 | | | Spec. Cond. | | 2 | | | | | | | | | | | | | | | 421.5 | | | | Sulfate | |) | | | | | | | | | | | | | ND | | | ND | | | TDS | | | | | | | | | | | | | | | 552 | 552 | | | | | Thallium | | | | | | | | | | | | | | | ND | | ND | ND | | | Turbidity | | | | | | | | | | | | | | | 880 | 13.2 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0213 | | ND | ND | | | Zinc | | | | | | | | | | | | | | | 0.138 | 0.00782 | 0.00755 | 0.0313 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 31 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 260 | 264 | 214 | - | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.675 | 0.303 | 0.319 | 0.365 | | | Beryllium | | | | | | | | | | | | | | | 0.007 | | ND | ND | | | Cadmium | | | | | | | | | | | | | | | 0.0082 | ND | 0.00656 | 0.00618 | | | Calcium | | | | | | | | | | | | | | | 62.6 | 73.9 | 70.3 | 78.7 | | | Chloride | | | | | | | | | | | | | | 5 | 222 | 200 | 226 | 243 | | ပ္ | Chromium | | | | | | | | | | | | | 4 | | 0.0533 | | ND | 0.00728 | |) <u>0</u> | Cobalt | | | | | | | | | | | | -4 |) | | 0.33 | 0.322 | 0.216 | | | ≦ | COD | | | | | | | | | 110 | | | | | | ND | 17.3 | | ND | | Monitoring Location MW06 | Copper | | | | | | | | | 112 | | 2 | - | | | 0.143 | 0.0157 | 0.0106 | | | K | Hardness | | | | | | | | | | 2 | | | | | 430 | 1720 | | | | tic | Iron | | | | | | | 30 | 12. | 4.4 | 7 | | | | | 69.4 | 2.9 | | 4.76 | | Sa | Lead | | | | | | | | | | 14 | | | | | 0.0519 | 0.0101 | 0.011 | 0.0137 | | Ŏ | Magnesium | | | | | | | | | / 4 | | | | | | 57.9 | 54.9 | | | | | Manganese | | | | | | 113 | | | | | | | | | 38.9 | 54 | 37.63 | | |)
J | Mercury | | | | • | | 2 | 1/2 | | | | | | | | ND | 0.00035 | | ND | | Ē | Nickel | | | | | 133 | A., | 2 | | | | | | | | 0.154 | 0.0339 | 0.032 | | | <u>\$</u> | Nitrate | | | | 7/// | - | 67 | | | | | | | | | 0.0757 | ND | ND | ND | | i i | pН | | | 775 | 4. | | P |) | | | | | | | | | | 5.58 | | | ₽ | Potassium | | ` | | | (2) | | | | | | | | | | 4.92 | 2.94 | | 3.63 | | _ | Selenium | | | - | | 113 3 | | | | | | | | | | 0.0429 | 0.0113 | | 0.00963 | | | Silver | | | | | | | | | | | | | | | | | ND | ND | | | Sodium | | | -60 | 15. | | | | | | | | | | | 56.2 | 63.1 | 61.2 | 70.9 | | | Spec. Cond. | | | 1133 | - | | | | | | | | | | | | | 984.9 | 1228 | | | Sulfate | | 65 | 57 | | | | | | | | | | | | 54.1 | 58.7 | 45.2 | 43.4 | | | TDS | | | | | | | | | | | | | | | 1080 | 868 | 1036 | | | | Thallium | | | | | | | | | | | | | | | | ND | 0.0001 | | | | Turbidity | | | | | | | | | | | | | | | 5300 | 1540 | | NT | | | Vanadium | | | | | | | | | | | | | | | | | ND | 0.0054 | | | Zinc | | | | | | | | | | | | | | | 0.5 | 0.0516 | 0.0487 | 0.0616 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 32 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 90 | 42 | 69 | | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.0666 | 0.0674 | 0.0636 | 0.058 | | | Beryllium | | | | | | | | | | | | | | | ND | | ND | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | | ND | | | Calcium | | | | | | | | | | | | | | | 46.7 | 46.5 | | | | | Chloride | | | | | | | | | | | | | 110 | | 131 | 119 | 117 | 70.3 | | | Chromium | | | | | | | | | | 1/1/1 | | | 1 | | ND | | ND | ND | | 0/ | Cobalt | | | | | | | | | | | | 7 | | | 0.0066 | | ND | 0.0065 | | ≦ | COD | | | | | | | | | | | 1/1 | | | | 12.6 | 15 | | 14.6 | | Monitoring Location MW07 | Copper | | | | | | | | 11/1 | 7 | | | | | | 0.016 | 0.01 | 0.0084 | | | 5 | Hardness | | | | | | | | 6 1 | | | | | | | 650 | 219 | | 198 | | ļ ţi l | Iron | | | | | | | 3(0) | 4 | 4 | - | | | | | 0.69 | 0.517 | | 0.478 | | l ca | Lead | | | | | | | | | | A. | | | | | ND | ND | | ND | | ŏ | Magnesium | | | | | | 7/7 | • | | - | | | | | | 23.2 | 28.1 | 31.5 | | | 💾 | Manganese | | | | | | | A., | | | | | | | | 2.01 | 0.761 | 0.562 | | |] | Mercury | | | | | | | 16 | | | | | | | | ND | ND | ND | ND | | <u>:</u> | Nickel | | | | | 130 | | 1 | | | | | | | | 0.0157 | 0.0064 | | | | 9 | Nitrate | | | | 17 | | 27 | | | | | | | | | 10.35 | 14.59 | 18.45 | 29.09 | | <u> </u> | рН | | 1 | | 4. | | | | | | | | | | | | | 5.55 | | | ₽ | Potassium | | | | | 6 | | | | | | | | | | 3.16 | | | | | | Selenium | | , | | | 13 | | | | | | | | | | ND | | | ND | | | Silver | | | | 11 2 | • | | | | | | | | | | ND | ND | ND | ND | | | Sodium | | | -62 | 5 - | | | | | | | | | | | 33.4 | 32.6 | | 22.7 | | | Spec. Cond. | | | 133 | | | | | | | | | | | | | | 568.3 | | | | Sulfate | | C C | - | | | | | | | | | | | | 13.1 | 12.4 | | | | | TDS | | 9 | | | | | | | | | | | | | 648 | 552 | | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 11.1 | 6.06 | | NT | | | Vanadium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Zinc | | | | | | | | | | | | | | | 0.0246 | 0.0119 | 0.0106 | 0.0148 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 33 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u></u> | | | | | | | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 190 | 480 | 209 | | | | Ammonia | | | | | | | | | | | | | | | 0.726 | 1.94 | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.273 | 0.177 | 0.109 | 0.12 | | | Beryllium | | | | | | | | | | | | | | | ND | ND | | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | | | | 59 | 114 | | | | | Chloride | | | | | | | | | | | | | . 0 | | 190 | 207 | 210 | 198 | | l & | Chromium | | | | | | | | | | . 61 | | | 11/10 | | 0.0215 | ND | ND | ND | | l õ | Cobalt | | | | | | | | | | 11/1 | | | 100 | | 0.0816 | ND |
ND | ND | | Monitoring Location MW08 | COD | | | | | | | | | -67 | 4 | - da | 75 | | | ND | 26.3 | | _ | | ≥ | Copper | | | | | | | | | 10 | | 11 | | | | 0.054 | 0.0145 | 0.0067 | 0.00811 | | l K | Hardness | | | | | | | | | 73 | 4 | 11. | | | | 270 | 600 | | 332 | | tic | Iron | | | | | | | | 19.12 | | | | | | | 15.1 | 1.69 | 0.69 | 1.15 | | l s | Lead | | | | | | | 5(0) | - | 4 10 | - | | | | | 0.01 | | | ND | | l ŏ | Magnesium | | | | | | | | | 1 2 | • | | | | | 36.9 | 90.9 | | | | | Manganese | | | | | | 2/1 | | 6 | | | | | | | 3.46 | 0.144 | 0.0902 | 0.0101 | | J 0 | Mercury | | | | | | | | | | | | | | | ND | ND | | ND | | <u> </u> | Nickel | | | | | | | 12 | | | | | | | | 0.0534 | 0.0082 | 0.00713 | 0.0065 | | 1 2 | Nitrate | | | | | 12.0 | | | | | | | | | | 7.63 | 13.85 | 5.65 | | | i <u> </u> | рН | | | | 1/7 | | | | | | | | | | | | | 6.65 | | | ₽ | Potassium | | | | | | | | | | | | | | | 10.4 | 19.1 | 14 | | | < | Selenium | | | | | 101 | | | | | | | | | | | | | ND | | | Silver | | | | | 130 | | | | | | | | | | | | | ND | | | Sodium | | | 16 | | | | | | | | | | | | 104 | 139 | | | | | Spec. Cond. | | | 160 | 5 | | | | | | | | | | | | | 1040 | | | | Sulfate | | | 13. | | | | | | | | | | | | 55 | 68.5 | | | | | TDS | | 470 | - | | | | | | | | | | | | 696 | 1136 | | | | | Thallium | | | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 1227 | 22.7 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0366 | | | ND | | | Zinc | | | | | | | | | | | | | | | 0.16 | 0.0143 | 0.0109 | 0.0104 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 34 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 64 | 110 | 44 | | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.334 | 0.156 | 0.172 | 0.0682 | | | Beryllium | | | | | | | | | | | | | | | ND | | ND | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | 1 | | | 15.8 | 14.9 | | | | | Chloride | | | | | | | | | | | 3 3 | | 7 | | 11.9 | 10.9 | 12.3 | 12.1 | | 6 | Chromium | | | | | | | | | | Till to | | 8 | CAL. | | 0.0588 | 0.032 | | 0.00903 | | l ĝ | Cobalt | | | | | | | | | | 1/3 | | 6 | | | 0.0341 | 0.016 | | ND | | Monitoring Location MW09 | COD | | | | | | | | | | , | 1 | | | | ND | | ND | ND | | 2 | Copper | | | | | | | | | | | | | | | 0.0339 | 0.0174 | | 0.0083 | | l K | Hardness | | | | | | | | 07 | | | | | | | 80 | 48 | | | | tic | Iron | | | | | | | 4 | | | | • | | | | 48.6 | 16.7 | | 3.05 | | l g | Lead | | | | | | | | , | 25 | | | | | | 0.0373 | 0.0132 | 0.0124 | | | Ŏ | Magnesium | | | | | | 11 | | | 1 | | | | | | 24.4 | 13.2 | 6.9 | | | | Manganese | | | | | | 19. | | 00 | | | | | | | 1.8 | 0.689 | | | | l û | Mercury | | | | | | _ | | 2 | | | | | | | ND | ND | 0.00035 | | | <u> </u> | Nickel | | | | | 1117 | | 77 | | | | | | | | 0.0553 | 0.0274 | | 0.00936 | | 얼 | Nitrate | | | | | - | 25 | | | | | | | | | 1.25 | 1.25 | 1.14 | | | <u> </u> | pН | | | 15 | 13 | | 9 | • | | | | | | | | | | 5.25 | | | | Potassium | | | | • | _(e)_ |) | | | | | | | | | 17.8 | | 1.54 | | | = | Selenium | | · · | | _9_1 | 93 | | | | | | | | | | ND | | ND | ND | | | Silver | | | | | 4. | | | | | | | | | | ND | | ND | ND | | | Sodium | | | | 0 4. | | | | | | | | | | | 7.23 | 3.75 | | 4.26 | | | Spec. Cond. | | | 1617 | 7 | | | | | | | | | | | | | 105.3 | | | | Sulfate | | 3 | 13. | | | | | | | | | | | | ND | | ND | ND | | | TDS | | S), | | | | | | | | | | | | | 168 | 172 | | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 1160 | 398 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0541 | 0.0285 | | ND | | | Zinc | | | | | | | | | | | | | | | 0.189 | 0.0777 | 0.0166 | 0.0242 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 35 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | | | | | | | <u> </u> | | | | | | | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|---------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 100 | 75 | 78 | | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 1.49 | 0.124 | 0.414 | 0.116 | | | Beryllium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | | | | 29.1 | 14.2 | 21.2 | 16.1 | | | Chloride | | | | | | | | | | | . 1 | 1 | | | 6.75 | 19.4 | 8.02 | 8.31 | | | Chromium | | | | | | | | | | 4. | 3 6 | | | | 0.125 | ND | 0.00566 | 0.0102 | | 1 7 | Cobalt | | | | | | | | | | Ville | | - 6 | Z.4/Z. | | 0.0659 | ND | 0.0103 | 0.00519 | | Monitoring Location MW10 | COD | | | | | | | | | | 12 | | 3) / | | | ND | 36.6 | | 4.4 | | ≥ | Copper | | | | | | | | | | | 11.00 | | | | 0.197 | 0.0123 | 0.0292 | | | l E | Hardness | | | | | | | | | \mathcal{L} | | | | | | 110 | 70 | | | | ti | Iron | | | | | | | | 6)] | | | | | | | 201 | | 5.7 | 9 | | l g | Lead | | | | | | | 20 | 113 | | | • | | | | | ND | 0.0153 | | | Ŏ | Magnesium | | | | | | | | , | 3, 10 | | | | | | 78.3 | 9.1112 | 10.7 | 9.78 | | 1 1 | Manganese | | | | | í | | - | | 17. | | | | | | 3.59 | 0.044 | 0.38 | | |)
Ju | Mercury | | | | | A (F) | 12. | | | 1 | | | | | | ND | | | ND | | Ē | Nickel | | | | | MY |) ~ | | 10 | | | | | | | | ND | 0.013 | 0.0112 | | 얼 | Nitrate | | | | -31 | ///3 | | | • | | | | | | | ND | ND | | ND | | <u> </u> | pН | | | | | - | 27 | (A) | | | | | | | | | | 5.35 | 5.8 | | ⁰ | Potassium | | | | 12 | | | | | | | | | | | 43.5 | 1.26 | | | | _ | Selenium | | | | | 10 |) | | | | | | | | | 0.0085 | | | ND | | | Silver | | | | . 2.1 | 4 | | | | | | | | | | | | | ND | | | Sodium | | | | | 4.0 | | | | | | | | | | 12.4 | 10.1 | 8.3 | | | | Spec. Cond. | | | | 0 4 | | | | | | | | | | | | | 132.5 | 144.6 | | | Sulfate | | | 1613 | 1 | | | | | | | | | | | 7.56 | 8.3 | 7.83 | | | | TDS | | | | | | | | | | | | | | | 148 | 140 | | | | | Thallium | | 3 | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 4340 | 3140 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.189 | | 0.00943 | 0.0242 | | | Zinc | | | | | | | | | | | | | | | 0.337 | 0.132 | 0.0575 | 0.0335 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 36 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | | , , | |---------------------------|-------------------|--------------|----------------|----------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|--------------| | | Alkalinity | | | | | | | | | | | | | | | 50 | | | | | | Ammonia | | | | | | | | | | | | | | | | | | ND | | | Antimony | | | | | | | | | | | | | | | | | | ND
ND | | | Arsenic
Barium | | | | | | | | | | | | | | | 0.749 | 0.274 | | | | | Beryllium | | | | | | | | | | | | | | | | | | ND | | | Cadmium | | | | | | | | | | | | | | | | | | ND | | | Calcium | | | | | | | | | | | | | | | 23.4 | 14.8 | | 11.4 | | | Chloride | | | | | | | | | | | | | | | 4.22 | 10.9 | 4.52 | 4.17 | | ∢ | Chromium | | | | | | | | | | ~1 | | | | 9 | 0.144 | 0.0273 | 0.00963 | 0.0354 | | Monitoring Location MW11A | Cobalt | | | | | | | | | | | | | 1.1 | | 0.0695 | 0.0181 | 0.0103 | 0.014 | | ÌÌ | COD | | | | | | | | | | | - | -47 | | | ND | ND | ND | ND | | \(\S | Copper | | | | | | | | | 110 | | 11 | | | | 0.0825 | 0.026 | | | | | Hardness | | | | | | | | | 112 | | 2 | | | | 90 | 36 | | | | <u>.e</u> | Iron | | | | | | | | 7.87 | | | | | | | 149 | 12.1 | 7.54 | | | ja l | Lead | | | | | | | 210 | 1 4. | 94.9 | 4 | | | | | 0.0499 | 0.0156 | 0.0122 | 0.00689 | | 8 | Magnesium | | | | | | الحوب | | | | 13 | | | | | 66.6 | 11.2 | 8.63 | 11.7 | | | Manganese | | | | | | | 7 | | | | | | | | 3.47 | 0.738 | 0.319 | | | ا
ور | Mercury | | | | | L(L) | 12. | | 484 | 3 | | | | | | ND | ND | ND | ND | | -≣ | Nickel | | | | | 1/1/7 | | 1 | | | | | | | | 0.145 | 0.0277 | 0.0171 | 0.0312 | | 일 |
Nitrate
pH | | | 4 | 107 | da. | - N | 70 | | | | | | | | 1.4774 | 1.1 | 1.94
5.14 | 1.29
5.51 | | '⊑ | Potassium | | | . 6 | 1/2 | | -5) | | | | | | | | | 27.7 | 1.87 | 1.3 | | | ₽ | Selenium | | | 7- | | 19 | | | | | | | | | | 0.0056 | | | ND | | | Silver | | | 1/2 | 4 | W. 3 | | | | | | | | | | | | | ND | | | Sodium | | | | 1 | 100 | | | | | | | | | | 8.49 | 4.21 | 5.15 | 4.66 | | | Spec. Cond. | | | | (D) | | | | | | | | | | | | | 92 | | | | Sulfate | | | 111 | - 1 | | | | | | | | | | | 7.07 | 6.28 | | | | | TDS | | 657 | 3 | | | | | | | | | | | | 108 | 72 | | | | | Thallium | | | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 4880 | 1600 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.124 | 0.0093 | | 0.0425 | | | Zinc | | | | | | | | | | | | | | | 0.334 | 0.0938 | 0.0493 | 0.0788 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 37 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |---------------------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 100 | | | | | | Ammonia | | | | | | | | | | | | | | | ND | | | ND | | | Antimony | | | | | | | | | | | | | | | ND | | | ND | | | Arsenic | | | | | | | | | | | | | | | ND | | | ND | | | Barium | | | | | | | | | | | • | | | | 0.0744 | | | | | | Beryllium | | | | | | | | | | | 120 | | | | ND | | | ND | | | Cadmium | | | | | | | | | | | | - | | | ND | | ND | ND | | | Calcium | | | | | | | | | | 4/1/4 | | | | | 34.4 | 15.4 | | | | | Chloride | | | | | | | | | - R | 1 | <u> </u> | 7). |) | | 4.18 | 4.79 | | | | <u> </u> | Chromium | | | | | | | | | 116 | | | | | | 0.0082 | | ND | ND | | ===================================== | Cobalt | | | | | | | | | 17 | | | - | | | 0.005 | | ND | ND | | ≥ | COD | | | | | | | | 15 1 | • | 15 | | | | | ND | | ND | ND | | Location MW11B | Copper | | | | | | | 20 | 110 | | 1 | | | | | 0.0131 | | ND | 0.00742 | | _ | Hardness | | | | | | | | | , | 7.7 | | | | | 94 | | | | | <u>.e</u> | Iron | | | | | | | 1 | | | | | | | | 6.97 | | ND | 1.37 | | at | Lead | | | | | | 113 | | | | | | | | | ND | | | ND | | l 8 | Magnesium | | | | | | , | 16 | | | | | | | | 8.36 | 6.63 | | | | ゴ | Manganese | | | | | 120 | | 2 | | | | | | | | 0.167 | 0.012 | | 0.0345 | | ୍ର ପ୍ର | Mercury | | | | 777 | _ | 7 | | | | | | | | | ND | | ND | ND | | .≒ | Nickel | | | | 4. | | E) . | | | | | | | | | 0.009 | | ND | ND | | 5 | Nitrate | | | | | | | | | | | | | | | 2.307 | 2.33 | | | | | рН | | | 4 | 18 | 10 3 | | | | | | | | | | | | 6.13 | | | Monitoring | Potassium | | | | | | | | | | | | | | | 2.5 | | | | | ≥ | Selenium | | | Log | <u>. G.</u> | | | | | | | | | | | ND | | | ND | | | Silver | | | 11/12 | - | | | | | | | | | | | ND | | ND | ND | | | Sodium | | 63.7 | | | | | | | | | | | | | 12.6 | 9.1 | | | | | Spec. Cond. | | | | | | | | | | | | | | | | | 123 | | | | Sulfate | | | | | | | | | | | | | | | ND | | ND | ND | | | TDS | | | | | | | | | | | | | | | 156 | 132 | 116 | 132 | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 72.4 | 4.99 | | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0229 | | ND | 0.00615 | | | Zinc | | | | | | | | | | | | | | | 0.0209 | ND | ND | 0.0106 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 38 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |--------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 15 | 16 | 22 | | | | Ammonia | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | | | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 1.32 | 0.749 | | | | | Beryllium | | | | | | | | | | | | | | | | | | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | | ND | | | Calcium | | | | | | | | | | | | | | | 82 | 78.8 | | | | | Chloride | | | | | | | | | | 411 | 7 | | 11/2 | | 374 | 371 | 286 | 348 | | 7 | Chromium | | | | | | | | | | 4 | | |) | | 0.1 | | ND | 0.0181 | | 7 | Cobalt | | | | | | | | | | 7 | | | | | 0.0492 | | | ND | | Monitoring Location MW12 | COD | | | | | | | | | 12 | | 2/1 | • | | | ND | | ND | 6.1 | | 2 | Copper | | | | | | | | | | | | | | | 0.109 | 0.0111 | 0.00629 | 0.0168 | | K | Hardness | | | | | | | 15 | | 94.1 | · 15 | | | | | 360 | 356 | | | | ţ | Iron | | | | | | | | | | 11.00 | | | | | 100 | 2.59 | | | | l ca | Lead | | | | | | | | | 0 | | | | | | 0.0616 | | 0.0106 | | | Ŏ | Magnesium | | | | | 2 | 112 | | | | | | | | | 69.5 | 43.1 | 29.1 | 32.7 | | 1 | Manganese | | | | | 71/17 | | 32 | | | | | | | | 3.02 | 0.138 | 0.103 | | | l û | Mercury | | | | 1/120 | 11. | | | | | | | | | | ND | | | ND | | <u> </u> | Nickel | | | | 7.12 | | 65 | | | | | | | | | 0.0938 | 0.0113 | | 0.0205 | | <u>알</u> | Nitrate | | | | | |) | | | | | | | | | 5.0188 | 4.38 | 4.87 | 4.43 | | Ē | pН | | | 13. | | · 6 W | | | | | | | | | | | | 4.66 | | | ⁰ | Potassium | | | | | 113 - | | | | | | | | | | 23.1 | 5.14 | | | | | Selenium | | | | 18 | * | | | | | | | | | | 0.0062 | | | ND | | | Silver | | | 120 | 7 | | | | | | | | | | | ND | | | ND | | | Sodium | | | S 11 2. | | | | | | | | | | | | 81.5 | 104 | 73.7 | 96.2 | | | Spec. Cond. | | - | 5 | | | | | | | | | | | | | | 836.7 | 1142 | | | Sulfate | | | | | | | | | | | | | | | 14.7 | 14.3 | 15.5 | | | | TDS | | | | | | | | | | | | | | | 1520 | 1184 | | | | | Thallium | | | | | | | | | | | | | | | ND | | | ND | | | Turbidity | | | | | | | | | | | | | | | 3920 | 57.4 | | NT | | | Vanadium | | | | | | | | | | | | | | | | ND | | ND | | | Zinc | | | | | | | | | | | | | | | 0.269 | 0.0352 | 0.0306 | 0.039 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 39 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | |----------------|-------------------|--------------|----------------|--------------|----------------|--|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|----------------|----------------|--------------|----------------| | | Alkalinity | | | | | | | | | | | | | | | 50 | | | | | | Ammonia | | | | | | | | | | | | | | | ND | | ND | ND | | | Antimony | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.332 | | | | | | Beryllium | | | | | | | | | | | | | | | ND | | ND | ND | | | Cadmium | | | | | | | | | | | | | - | | ND | | ND | ND | | | Calcium | | | | | | | | | | -4 | 2.2 | | 1 | | 26.5 | 23.8 | | | | | Chloride | | | | | | | | | | 11/1 | | 7 | | | 84.3 | 83.5 | | | | ₹ | Chromium | | | | | | | | | | 11. | - | 4) 2 | | | 0.024 | | ND | 0.0853 | | Ξ | Cobalt | | | | | | | | | 170 | | 1/1 | | | | 0.029 | 0.0079 | | | | ≧ | COD | | | | | | | | 4 | | 1 | 1/1/2 | | | | 34.6 | | ND | 10.1 | | ≥ | Copper | | | | | | | | 2 1 | _ | | | | | | 0.071 | 0.0121 | | | | = | Hardness | | | | | | | 40 | 7- | - W | 13 | | | | | 160 | 128
3.32 | | | | Location MW13A | Iron | | | | | | 4 1/2 | | | 1/1 | - | | | | | 28.3
0.0112 | | 0.00686 | | | l g | Lead
Magnesium | | | | | | 77-7 | ~ | | - | | | | | | 23.5 | 20.7 | | | | Ŏ | Manganese | | | <u> </u> | | (0) | 1/2 | 10 | | | - | | | | | 0.876 | 0.302 | 0.376 | | | | Mercury | | | | | | | -4-7 | | | | | | | | 0.00032 | 0.00026 | | | | ۱ ک | Nickel | | | | 4 | 12. | | | | | | | | | | 0.00032 | 0.00020 | 0.00062 | | | | Nitrate | | | | 77 | | C- | | | | | | | | | 2.48 | 2.29 | | | | 15 | pH | | - | | - | | - | | | | | | | | | 2.40 | 2.20 | 4.79 | | | = | Potassium | | | 7 | 4. 4 | 160 | | | | | | | | | | 8.65 | 3.03 | | 22.6 | | Monitoring | Selenium | | | _ | 14 | 7 | | | | | | | | | | ND | | ND | ND | | _ | Silver | | | | 17. | | | | | | | | | | | ND | ND | ND | ND | | | Sodium | | | 447 | 7 | | | | | | | | | | | 17.6 | 16.1 | 15.5 | | | | Spec. Cond. | | @ 90 | 1000 | | | | | | | | | | | | | | 303 | | | | Sulfate | | 9 | | | | | | | | | | | | | ND | ND | ND | ND | | | TDS | | | | | | | | | | | | | | | 380 | 324 | 456 | 392 | | | Thallium | | | | | | | | | | | | | | | ND | | ND | ND | | | Turbidity | | | | | | | | | | | | | | | 1048 | 56.8 | NT | NT | | | Vanadium | | | | | | | | | | | | | | | 0.0626 | 0.0099 | 0.00944 | 0.238 | | | Zinc | | | | | | | | | | | | | | | 0.0902 | 0.0194 |
0.0224 | 0.231 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 40 of 41 Table 4 Metals and Other Water Quality Parameters - Long Term Summary | | | | | | | | • | | | | | | <u>a .</u> | | | | <u> </u> | | | |---------------------------|-------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------|--------------|----------------| | Sample Site | Parameter | Fall
2003 | Spring
2004 | Fall
2004 | Spring
2005 | Fall
2005 | Spring
2006 | Fall
2006 | Spring
2007 | Fall
2007 | Spring
2008 | Fall
2008 | Spring
2009 | Fall
2009 | Spring
2010 | Fall
2010 | Spring
2011 | Fall
2011 | Spring
2012 | | | Alkalinity | | | | | | | | | | | | | | | 230 | 720 | | | | | Ammonia | | | | | | | | | | | | | | | | | | ND | | | Antimony | | | | | | | | | | | | | | | | ND | ND | ND | | | Arsenic | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Barium | | | | | | | | | | | | | | | 0.0676 | 0.073 | 0.0706 | 0.0746 | | | Beryllium | | | | | | | | | | | | | | | | | | ND | | | Cadmium | | | | | | | | | | | | | | | ND | ND | ND | ND | | | Calcium | | | | | | | | | | | | | | | 82.7 | 80.5 | | | | | Chloride | | | | | | | | | | | | | | | 84.6 | 84.7 | 85.5 | | | <u> </u> | Chromium | | | | | | | | | | | | | 110 | | | | | ND | | 13 | Cobalt | | | | | | | | | | | | | | | | | | ND | | Monitoring Location MW13B | COD | | | | | | | | | - | | | | | | 6.2 | 9.6 | | | | Σ | Copper | | | | | | | | | | | 1/1 | | | | 0.0063 | | | ND | | _ | Hardness | | | | | | | | ~1/7 | 7 | | | | | | 360 | 313 | | | | <u>.e</u> | Iron | | | | | | | | 67 17 | | | | | | | 0.571 | | ND | 0.498 | | at | Lead | | | | | | | 7(0) | 7- | -00 | | | | | | | ND | | ND | | % | Magnesium | | | | | | | | | 11 | * | | | | | 27.6 | 31.4 | 31.2 | | | Ľ | Manganese | | | | | | 111 | • | - (2) | - | | | | | | 0.0306 | 0.0323 | 0.0324 | | | g | Mercury | | | | | -0 | 113 | <u> </u> | | • | | | | | | 0.0002 | | | ND | | = | Nickel | | | | | | | 4 | | | | | | | | | | ND | 0.00581 | | 5 | Nitrate | | | | | 120 | | 2/1 | | | | | | | | 1.467 | 1.62 | 1.6 | | | l ji | pН | | | | 177 | | 27 | 5 | | | | | | | | | | 5.85 | | | <u>ō</u> | Potassium | | | 175 | - | | 9 | | | | | | | | | 3.3 | 4.07 | 3.53 | | | ≥ | Selenium | | | | | 187 | | | | | | | | | | | | | ND | | | Silver | | , | | 150 | (1) a | | | | | | | | | | | | | ND | | | Sodium | | | 46 | 113 | • | | | | | | | | | | 19.9 | 18.2 | 17.9 | | | | Spec. Cond. | | | 42 | 5. | | | | | | | | | | | | | 586.8 | 713.4 | | | Sulfate | | - P | 113. | - | | | | | | | | | | | 6.18 | | 6.71 | 7.55 | | | TDS | | 2 | | | | | | | | | | | | | 540 | 572 | | | | | Thallium | | | | | | | | | | | | | | | | | | ND | | | Turbidity | | | | | | | | | | | | | | | 0.232 | 0.364 | | NT | | | Vanadium | | | | | | | | | | | | | | | | | | ND | | | Zinc | | | | | | | | | | | | | | | ND | ND | ND | 0.00501 | Note: MCL exceedances are indicated in Red SPRING 2012 Report Page 41 of 41 **TABLE A - Filtered ans Unfiltered Sampling Results for Metals** | | | | | | | M | onitor | ing W | ell | | | | |----------|---------------|------------|---------|---------|---------|---------|---------|---------|--------|---------|---------|---------| | | | | OB01 | OB02 | OB02A | OB03 | ОВ03А | OB04 | OB04A | ОВ06 | OB07 | ОВ07А | | | Antimony | Unfiltered | ND | | Antimony | | ND | | ND | | Arsenic | Unfiltered | ND | ND | ND | ND | ND | 0.00907 | 0.0105 | ND | ND | ND | | | Arsenic | Filtered | ND | ND | ND | ND | ND | 0.00992 | 0.0119 | ND | ND | ND | | | Barium | Unfiltered | 0.214 | 0.0702 | 0.356 | 0.697 | 0.51 | 0.281 | 0.0614 | 0.221 | 0.0261 | 0.0405 | | | Darium | Filtered | 0.213 | 0.063 | 0.366 | 0.681 | 0.512 | 0.283 | 0.0606 | 0.184 | 0.0242 | 0.0408 | | | Beryllium | O | ND | | ND | | Dei yilidili | | ND | | ND | | Cadmium | | | | ND | | Caumum | | ND | | ND | | Calcium | Unfiltered | 81.24 | 28.37 | 94 | 74.4 | 76 | 173 | | 142 | 108 | 82.9 | | | Calcium | Filtered | 84.9 | 28.5 | 89.3 | 72.7 | 76.5 | 169 | | 145 | 114 | | | | Chromium | • | ND | | ND | ND | ND | ND | ND | 0.0133 | ND | ND | | | Cilionilani | Filtered | ND | | ND | | Cobalt | Unfiltered | 0.0219 | ND | ND | 0.0634 | 0.057 | ND | ND | 0.00694 | ND | ND | | | Copail | Filtered | 0.0216 | ND | ND | 0.0624 | 0.0558 | ND | ND | 0.005 | ND | ND | | | Connor | Unfiltered | 0.0119 | 0.00631 | 0.00507 | 0.0082 | 0.00958 | 0.0377 | 0.0295 | 0.0309 | 0.00909 | 0.00594 | | | Copper | Filtered | 0.00724 | ND | 0.00607 | 0.00535 | 0.00583 | 0.0364 | 0.0252 | 0.0088 | 0.00548 | 0.00643 | | | Iron | Unfiltered | 1.6 | 1.18 | 0.396 | 23.68 | 29.85 | 0.804 | 1.12 | 12.2 | 0.957 | 0.458 | | 9 | IIOII | Filtered | 0.429 | 0.865 | 0.426 | 22.84 | 29.76 | 0.804 | 0.579 | 0.714 | 0.498 | 0.438 | |) te | Lead | Unfiltered | ND 0.0081 | ND | ND | | arameter | Leau | Filtered | ND | ā | Magnesium | Unfiltered | 48.58 | 11.97 | 53.1 | 42.7 | 52.7 | 88.9 | 88.8 | 61.3 | 33.6 | 48.3 | | ar | Magnesium | Filtered | 50.1 | 11.5 | 49.9 | 41.9 | 53.5 | 94.3 | 89.6 | 60.4 | 36.6 | 52 | | Δ. | Manganese | Unfiltered | 6.33 | 0.919 | 0.0449 | 19.6 | 13.7 | 2.07 | 1.01 | 0.592 | 0.113 | | | | Manganese | Filtered | 5.95 | 0.839 | 0.0459 | 20.2 | 13.2 | 2.22 | 1.21 | 0.517 | 0.0342 | 0.0494 | | | Mercury | Unfiltered | 0.00036 | | ND | 0.00025 | ND | ND | ND | 0.00054 | 0.00029 | | | | Mercury | Filtered | ND | | ND 0.00038 | | | Nickel | Unfiltered | 0.0406 | | 0.0135 | 0.0215 | 0.0185 | 0.0178 | 0.0234 | 0.0207 | | ND | | | MICKEI | Filtered | 0.0396 | | 0.0138 | 0.0209 | | 0.0168 | | 0.0128 | | ND | | | Potassium | Unfiltered | 4.57 | 3.76 | | 7.95 | | 7.03 | | | | | | | i otassiuiii | Filtered | 4.22 | 3.71 | 5.29 | 8.23 | 12.2 | 7.39 | | 4.6 | | | | | Selenium | | | | ND | 0.00545 | 0.00586 | 0.032 | | | 0.00506 | | | | Seleman | | ND | | ND | 0.0052 | 0.00541 | 0.0346 | | 0.0122 | 0.00579 | | | | Silver | | | | ND | | Silvei | Filtered | ND | | ND | | Sodium | Unfiltered | 77.79 | 15.64 | 37.5 | 58.9 | | 73.3 | | | 24.5 | | | | Socialii | Filtered | 81.5 | 15.7 | 35.3 | 57.7 | 92.7 | 79.3 | | 78.7 | 26.1 | 31.4 | | | Thallium | | | | ND | | ···aiiiaiii | | ND | | ND | | Vanadium | | ND | | ND | ND | ND | ND | ND | 0.0148 | | ND | | | v anaulum | Filtered | ND | | ND | | Zinc | Unfiltered | 0.0163 | 0.00627 | 0.00652 | 0.0175 | 0.0142 | 0.00692 | 0.0227 | | 0.00575 | ND | | | 4 1110 | Filtered | 0.0132 | 0.00583 | 0.00727 | 0.0153 | 0.00914 | 0.00935 | 0.021 | 0.0217 | ND | ND | NS: Not Sampled SPRING 2012 Results Page 1 of 4 **TABLE A - Filtered ans Unfiltered Sampling Results for Metals** | | | | | | | | Moni | itoring | Well | | | | |----------|------------|------------------------|----------|------------|------------|--------------|-----------------|---------|------------|------------|--------------|-----------------| | | | | OB08 | OB08A | OB10 | OB102 | OB105 | OB11 | OB11A | OB12 | OB15 | OB25 | | | Antimony | Unfiltered | ND | | Antimony | Filtered | ND | | ND | | Arsenic | Unfiltered | ND | ND | ND | ND | 0.0147 | ND | ND | ND | ND | ND | | | Arsenic | Filtered | ND | | ND | ND | 0.00844 | | ND | ND | ND | ND | | | Barium | Unfiltered | 0.129 | 0.0735 | 0.0569 | 0.355 | 0.601 | 0.0295 | | 0.0174 | 0.0722 | 0.146 | | | Darium | Filtered | 0.127 | 0.0706 | 0.0535 | 0.344 | 0.208 | 0.0301 | 0.179 | 0.0178 | 0.0788 | 0.0804 | | | Beryllium | Unfiltered | ND | | ND | ND | 0.0112 | | ND | ND | ND | ND | | | Berymani | Filtered | ND | | ND | | Cadmium | Unfiltered | ND | | ND | ND | 0.0109 | | ND | ND | ND | ND | | | Gadillalli | Filtered | ND | | ND | ND | ND | 0.0101 | | ND | ND | ND | | | Calcium | Unfiltered | 70.8 | 53.3 | 48.1 | 115 | 160 | 132 | | 38.3 | 16.5 | | | | Galolalli | Filtered | 65 | 53.6 | 46.7 | 115 | 165 | 130 | | 38.2 | 17.9 | | | | Chromium | Unfiltered | ND | | ND | ND | 0.166 | | ND | ND | ND | 0.0297 | | | Omomani | Filtered | ND | | ND | | Cobalt | Unfiltered | 0.00789 | 0.0171 | 0.00519 | 0.0734 | | ND | 0.025 | | ND | 0.0393 | | | - Cobait | Filtered | 0.00744 | 0.016 | 0.00501 | 0.0706 | | ND | | | 0.00653 | 0.0156 | | | Copper | Unfiltered | ND | 0.00802 | | 0.0505 | 0.293 | 0.00894 | | 0.00512 | 0.00664 | 0.0374 | | | оорро: | Filtered | ND | | ND | 0.0451 | 0.00518 | 0.00675 | | 0.00544 | ND | ND | | | Iron | Unfiltered | 0.74 | 3.44 | 0.975 | 0.945 | 253 | 0.726 | | | 6.6 | | | er | | Filtered | 0.737 | 3.5 | 0.973 | 0.559 | 14.1 | 0.705 | | | 11.75 | | | et | Lead | Unfiltered | ND | | ND | ND | 0.0726 | | ND | ND | ND | 0.00771 | | arameter | | Filtered | ND | | ND | g | Magnesium | Unfiltered | 17.7 | 21.8 | 25.8 | 97.4 | 168 | 67.4 | | 24.5 | 21.3 | 57.7 | | al | | Filtered | 16.8 | 22.3 | 25.7 | 96.1 | 156.2 | 66.5 | | 25.1 | 20.6 | 48.3 | | ط | Manganese | Unfiltered | 6.84 | 7.53 | 3.15 | 21.2 | 6.03 | 0.758 | | 0.114 | 1.28 | 7.21 | | | | Filtered | 7.29 | 6.97 | 3.1 | 21.1 | 3.37 | | 6.63 | 0.117 | 1.62 | 4.91 | | | Mercury | Unfiltered | | | ND | ND | 0.00645 | 0.00098 | | ND | ND | 0.00129 | | | | Filtered | ND | | ND | ND | ND | 0.00057 | | ND | ND | ND | | | Nickel | Unfiltered | 0.00877 | 0.00751 | 0.00887 | 0.0925 | 0.283 | 0.0339 | 0.0192 | 0.00911 | 0.015 | 0.0467 | | | | Filtered | 0.0082 | 0.00665 | | 0.09 | 0.026 | 0.0326 | | | 0.0144 | | | | Potassium | Unfiltered | 2.85 | | | | | | | | 2.12
2.22 | | | | | Filtered | 2.82 | 2.79
ND | 3.09
ND | 39
0.017 | 51.03
0.0198 | | 6.57
ND | 2.94
ND | 2.22
ND | 9.56
0.00523 | | | Selenium | Unfiltered
Filtered | ND
ND | | ND
ND | 0.017 | | | ND | ND
ND | ND | 0.00523
ND | | | | | ND | | ND | 0.0163
ND | 0.0256
ND | ND | ND | ND | ND | ND | | | Silver | Unfiltered
Filtered | ND | | ND | | | Unfiltered | 28 | 32.9 | | 532 | 226 | 68 | | 30 | 29.2 | 43.9 | | | Sodium
 Filtered | 27 | 33.7 | 18.8 | | 242 | 68.3 | | | 40.3 | | | | | Unfiltered | ND Z1 | | ND 42.1 | | | Thallium | Filtered | ND | | ND | | | Unfiltered | ND | | ND | ND | 0.363 | | ND | ND | ND | 0.0236 | | | Vanadium | Filtered | ND | ND | ND | ND | 0.363
ND | ND | ND | ND | ND | 0.0236
ND | | | | Unfiltered | 0.00607 | 0.0101 | 0.00662 | 0.013 | | | | 0.00533 | | | | | Zinc | Filtered | ND | 0.0101 | | 0.013 | 0.975 | | | | | | | | | riilerea | אט | 0.006 | 0.0077 | 0.0127 | 0.0101 | 0.0428 | 0.023 | 0.00563 | 0.072 | 0.00762 | NS: Not Sampled SPRING 2012 Results Page 2 of 4 **TABLE A - Filtered ans Unfiltered Sampling Results for Metals** | | | | | | | | | Moni | toring | Well | | | |----------|--------------|------------|---------|---------|---------|---------|--------|---------|---------|---------|---------|---------| | | | | MW1B | MW2A | MW2B | MW3A | MW3B | MW04 | MW06 | MW07 | MW08 | MW09 | | | Antimony | Unfiltered | ND | | Antimony | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Arsenic | Unfiltered | ND | | Arsenic | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Barium | Unfiltered | 0.00843 | 0.0209 | 0.00636 | 0.223 | 0.0994 | 0.0721 | 0.365 | 0.058 | 0.12 | 0.0682 | | | Darium | Filtered | 0.00593 | | 0.00632 | 0.00758 | | 0.0386 | 0.267 | 0.0595 | 0.124 | 0.0506 | | | Beryllium | Unfiltered | ND | | Dei yilidili | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Cadmium | Unfiltered | ND | ND | ND | ND | ND | ND | 0.00618 | ND | ND | ND | | | Caumum | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Calcium | Unfiltered | 8.77 | 10.5 | 9.89 | | 42.3 | 40.4 | | 41.7 | 70.1 | 10.48 | | | Calcium | Filtered | 8.95 | | 9.84 | 4.43 | _ | 38.6 | | 41.3 | 71.7 | 9.92 | | | Chromium | Unfiltered | 0.00854 | 0.0404 | ND | 0.0815 | | 0.00761 | | ND | ND | 0.00903 | | | Cilionilani | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Cobalt | Unfiltered | ND | 0.014 | ND | 0.0397 | 0.012 | ND | 0.374 | 0.0065 | ND | ND | | | Copail | Filtered | ND | NS | ND | ND | NS | ND | 0.356 | 0.0054 | ND | ND | | | Connor | Unfiltered | 0.0104 | 0.028 | 0.00608 | 0.122 | 0.0403 | 0.0145 | 0.0243 | 0.0115 | 0.00811 | 0.0083 | | | Copper | Filtered | ND | NS | 0.00603 | ND | NS | ND | 0.00618 | 0.0089 | | ND | | | Iron | Unfiltered | 2.22 | 1.27 | ND | 86.1 | 19.4 | 7.69 | 4.76 | 0.478 | | | | ЭE | 11011 | Filtered | ND | NS | ND | ND | NS | 0.312 | 0.392 | 0.52 | 0.362 | ND | | ÷ | Lead | Unfiltered | ND | ND | ND | 0.0435 | 0.0138 | ND | 0.0137 | ND | ND | ND | | υ | Leau | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | arameter | Magnesium | Unfiltered | 5.74 | 3.59 | 2.44 | 28.1 | 11.7 | 25.5 | | 25.7 | 40.5 | 7.22 | | ā | Magnesium | Filtered | 4.96 | | 2.61 | 1.78 | | 23.3 | 57.8 | 26 | 42.8 | 5.79 | | <u>α</u> | Manganese | Unfiltered | 0.0541 | 0.148 | 0.0393 | 1.17 | 0.371 | 0.549 | 44.4 | 0.681 | 0.0101 | 0.242 | | | Marigariese | Filtered | ND | NS | 0.0418 | | NS | 0.122 | 47.7 | 0.647 | | 0.157 | | | Mercury | Unfiltered | ND | 0.00059 | | ND | | Wier cur y | Filtered | 0.00801 | | ND | ND | NS | ND | ND | ND | ND | ND | | | Nickel | Unfiltered | ND | 0.032 | 0.00523 | 0.0752 | 0.0363 | 0.0157 | 0.0429 | 0.00667 | 0.0065 | | | | IVICKEI | Filtered | 1.36 | | 0.00701 | | NS | 0.00846 | | | | | | | Potassium | Unfiltered | 1.05 | | | | | | | | | | | | i otassiaiii | Filtered | ND | NS | 1.66 | | | 2.86 | | 3.06 | | | | | Selenium | Unfiltered | ND | ND | ND | ND | ND | ND | 0.00963 | | ND | ND | | | Ocicinani | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Silver | Unfiltered | ND | ND | ND | ND | ND | ND | | ND | ND | ND | | | On vei | Filtered | 8.88 | | ND | ND | NS | ND | ND | ND | ND | ND | | | Sodium | Unfiltered | 9.05 | 10.4 | 8.64 | | | | 70.9 | | 106 | | | | | Filtered | ND | NS | 9.67 | 3.84 | | 29.1 | 77.8 | | | | | | Thallium | Unfiltered | ND | | . namam | Filtered | ND | NS | ND | ND | NS | ND | ND | ND | ND | ND | | | Vanadium | Unfiltered | ND | ND | ND | 0.1 | 0.022 | | 0.0054 | | ND | ND | | | • anadium | Filtered | 0.0179 | | ND | ND | NS | ND | ND | ND | ND | ND | | | Zinc | Unfiltered | 0.00677 | 0.0369 | | | | | | | | | | | | Filtered | ND | NS | 0.00782 | 0.00678 | NS | 0.00693 | 0.0334 | 0.0121 | ND | 0.0108 | NS: Not Sampled SPRING 2012 Results Page 3 of 4 **TABLE A - Filtered ans Unfiltered Sampling Results for Metals** | | | | | | | | | Mon | itoring V | Vell | | |-----------|--------------|------------|---------|---------|---------|--------|---------|---------|-----------|---------|-----------| | | | | MW10 | MW11A | MW11B | MW12 | MW13A | MW13B | Minimum | Maximum | Average | | | Antimony | Unfiltered | ND | | ND | | Antimony | Filtered | ND | | Arsenic | Unfiltered | ND | | Aiseilic | Filtered | ND | | Barium | Unfiltered | 0.116 | 0.138 | 0.0252 | 0.635 | 0.687 | 0.0746 | 0.00636 | 0.697 | 0.1904969 | | | Darium | Filtered | 0.0681 | 0.0258 | 0.0201 | 0.589 | 0.19 | 0.0767 | 0.00593 | 0.681 | 0.1513538 | | | Beryllium | Unfiltered | ND | | | ND | ND | ND | ND | ND | ND | | | Dei yilidili | Filtered | ND | | ND | | Cadmium | | ND | | | ND | ND | ND | ND | ND | ND | | | Caumum | Filtered | ND | | Calcium | Unfiltered | 16.1 | 11.4 | 14.3 | 65.2 | 29.1 | 91.2 | 8.77 | 173 | 65.054167 | | | Calcium | Filtered | 15.8 | 9.75 | 15.1 | 61 | 29 | 77 | 4.43 | 169 | 66.655588 | | | Chromium | Unfiltered | 0.0102 | 0.0354 | ND | 0.0181 | 0.0853 | ND | 0.00728 | 0.166 | 0.0395186 | | | Cilionilani | Filtered | ND | | Cobalt | Unfiltered | 0.00519 | 0.014 | ND | ND | 0.0683 | ND | 0.00519 | 0.374 | 0.0553058 | | | Copail | Filtered | ND | ND | ND | ND | 0.00642 | ND | 0.005 | 0.356 | 0.0446667 | | | Connor | Unfiltered | 0.027 | 0.0452 | 0.00742 | 0.0168 | 0.197 | ND | 0.00507 | 0.293 | 0.0344367 | | | Copper | Filtered | ND | ND | ND | 0.008 | ND | ND | 0.00518 | 0.0451 | 0.0113517 | | | Iron | Unfiltered | 9 | 22.56 | 1.37 | 4.09 | 108 | 0.498 | 0.396 | 253 | 18.913441 | | ЭĒ | 11011 | Filtered | ND | ND | ND | 0.313 | ND | 0.425 | 0.312 | 29.76 | 3.76156 | |)t(| Lead | Unfiltered | ND | 0.00689 | ND | ND | 0.0327 | ND | 0.00689 | 0.0726 | 0.024875 | | ĭ | Leau | Filtered | ND | Parameter | Magnesium | Unfiltered | 9.78 | 11.7 | 7.72 | 32.7 | 47 | 32.2 | 2.44 | 168 | 40.259444 | | ar | Magnesium | Filtered | 7.69 | 3.55 | 8.06 | 30 | 21.1 | 27.4 | 1.78 | 156.2 | 39.642353 | | Δ. | Manganese | Unfiltered | 0.158 | 0.451 | 0.0345 | 0.155 | 1.88 | 0.0382 | 0.0101 | 44.4 | 4.3119361 | | | Manganese | Filtered | 0.0272 | 0.015 | 0.00906 | 0.0554 | 0.238 | 0.0374 | 0.00906 | 47.7 | 4.947412 | | | Mercury | | ND | ND | | ND | 0.00257 | | 0.00025 | 0.00645 | 0.001439 | | | ivier cui y | Filtered | ND | | Nickel | Unfiltered | 0.0112 | | ND | 0.0205 | 0.0773 | 0.00581 | 0.00523 | 0.283 | 0.0340784 | | | MICKEI | Filtered | ND | | ND | 0.0104 | 0.00832 | 0.00529 | 0.00020 | 1.36 | 0.0696904 | | | Potassium | Unfiltered | 2.78 | | 1.12 | | | | | 58.6 | 7.975 | | | i otassiuiii | Filtered | 1.14 | 0.812 | 0.9 | | | 3.55 | 0.812 | 51.03 | 6.6303333 | | | Selenium | | ND | | | ND | ND | ND | 0.00506 | 0.0373 | 0.01412 | | | Ocicinani | Filtered | ND | ND | | ND | ND | ND | ND | ND | ND | | | Silver | Unfiltered | ND | | | ND | ND | ND | ND | ND | ND | | | Onver | Filtered | ND | | Sodium | Unfiltered | 8.54 | 4.66 | 9.38 | | 15.1 | 18.9 | 4.26 | 532 | 60.319167 | | | - Couldin | Filtered | 9.68 | 5.15 | 10.16 | | | 16.2 | 3.7 | 508 | 64.075758 | | | Thallium | Unfiltered | ND | | | ND | ND | ND | ND | ND | ND | | | . Halliulli | Filtered | ND | | Vanadium | Unfiltered | 0.0242 | 0.0425 | 0.00615 | | 0.238 | | 0.0054 | 0.363 | 0.083965 | | | • anaulum | Filtered | ND | ND | ND | ND | ND | ND | 0.0179 | 0.0179 | 0.0179 | | | Zinc | Unfiltered | 0.0335 | | 0.0106 | 0.039 | 0.231 | 0.00501 | 0.00501 | 0.975 | 0.066874 | | | Zinc | Filtered | 0.0109 | 0.00887 | ND | 0.0242 | 0.0121 | ND | 0.00583 | 0.072 | 0.01572 | NS: Not Sampled SPRING 2012 Results Page 4 of 4 ## **Appendix E** ## Table of Groundwater Elevations and Groundwater Elevation Contour Map Results in (ft. AMSL) ## **TABLE 5 - Water Table Elevations Gude Landfill** | Manit | Well | Fall 2010 | Spring 2011 | Fall 2011 | Spring 2012 | Elevation | Spring 2012 Measured | |------------|-----------|-----------|----------------|-----------------------|-----------------------|----------------|-----------------------------| | Monitoring | Elevation | Water | Water | Water | Water | Change From | Water Elevation From | | Well | (ft) | Elevation | Elevation (ft) | Elevation (ft) | Elevation (ft) | Fall 2011 (ft) | Ground Level (ft) | | OB01 | 415.90 | 399.65 | 402.30 | 401.80 | 401.32 | -0.5 | 14.58 | | OB02 | 418.48 | 400.98 | 404.18 | 400.28 | 402.93 | 2.7 | 15.55 | | OB02A | 418.61 | 401.01 | 404.51 | 400.51 | 403.16 | 2.7 | 15.45 | | OB03 | 409.86 | 385.66 | 390.96 | 385.71 | 388.39 | 2.7 | 21.47 | | OB03A | 410.06 | 385.66 | 390.26 | 386.06 | 388.45 | 2.4 | 21.61 | | OB04 | 364.21 | 358.71 | 359.71 | 359.21 | 359.53 | 0.3 | 4.68 | | OB04A | 365.37 | 359.37 | 360.47 | 359.82 | 360.16 | 0.3 | 5.21 | | OB06 | 339.78 | 329.08 | 332.88 | 328.28 | 331.60 | 3.3 | 8.18 | | OB07 | 329.49 | 320.39 | 323.99 | 320.19 | 323.33 | 3.1 | 6.16 | | OB7A | 328.44 | 319.84 | 323.24 | 319.79 | 323.05 | 3.3 | 5.39 | | OB08 | 325.11 | 318.01 | 318.91 | 318.31 | 318.74 | 0.4 | 6.37 | | OB08A | 325.31 | 317.61 | 318.81 | 317.91 | 318.09 | 0.2 | 7.22 | | OB10 | 325.77 | 318.27 | 318.97 | 318.72 | 318.99 | 0.3 | 6.78 | | OB102 | 363.17 | 349.97 | 352.52 | 349.47 | 351.83 | 2.4 | 11.34 | | OB105 | 363.45 | 359.85 | 360.85 | 360.25 | 360.90 | 0.6 | 2.55 | | OB11 | 362.56 | 353.26 | 355.16 | 353.56 | 354.41 | 0.9 | 8.15 | | OB11A | 361.90 | 352.70 | 354.20 | 353.30 | 353.67 | 0.4 | 8.23 | | OB12 | 405.01 | 386.81 | 389.91 | 386.21 | 388.82 | 2.6 | 16.19 | | OB015 | 410.01 | 387.01 | 391.71 | 386.81 | 390.22 | 3.4 | 19.79 | | OB025 |
361.89 | 352.79 | 355.59 | 353.19 | 354.17 | 1.0 | 7.72 | | MW1B | 434.00 | 388.10 | 385.90 | 385.55 | 384.34 | -1.2 | 49.66 | | MW2A | 445.53 | 381.53 | 375.33 | 377.68 | 372.58 | -5.1 | 72.95 | | MW2B | 444.45 | 381.55 | 374.95 | 377.65 | 372.58 | -5.1 | 71.87 | | MW3A | 324.54 | 314.39 | 315.84 | 315.14 | 315.30 | 0.2 | 9.24 | | MW3B | 324.73 | 316.13 | 317.63 | 313.13 | 316.57 | 3.4 | 8.16 | | MW04 | 324.75 | 317.90 | 318.25 | 318.10 | 318.29 | 0.2 | 6.46 | | MW06 | 417.29 | 400.59 | 401.20 | 402.24 | 402.20 | 0.0 | 15.09 | | MW07 | 433.81 | 389.51 | 392.41 | 388.01 | 389.27 | 1.3 | 44.54 | | MW08 | 412.66 | 388.86 | 394.76 | 389.56 | 392.46 | 2.9 | 20.2 | | MW09 | 417.69 | 398.19 | 401.49 | 397.39 | 400.11 | 2.7 | 17.58 | | MW10 | 394.03 | 385.13 | 390.33 | 385.03 | 387.79 | 2.8 | 6.24 | | MW11A | 393.45 | 375.85 | 382.05 | 376.35 | 379.52 | 3.2 | 13.93 | | MW11B | 393.40 | 374.95 | 379.10 | 376.30 | 378.34 | 2.0 | 15.06 | | MW12 | 397.55 | 382.20 | 384.55 | 382.10 | 384.14 | 2.0 | 13.41 | | MW13A | 373.37 | 365.97 | 367.67 | 366.77 | 367.55 | 0.8 | 5.82 | | MW13B | 373.35 | 366.95 | 368.45 | 367.65 | 368.37 | 0.7 | 4.98 | | AVERAGE | | | | | | 1.2 | <u> </u> | ## NOTES: - Elevations are from Sea Level General Groundwater Flow Direction at Gude Landfall - SPRING 2012 372.58 331.60